Question

Instructions: Approximate the following definite integrals using the indicated Riemann sums. 1. Z 9 1 x...

Instructions: Approximate the following definite integrals using the indicated Riemann sums.

1. Z 9 1 x 1 + x dx using a left-hand Riemann sum L4 with n = 4 subintervals.

2. Z 3 0 x 2 dx using a midpont Riemann sum M3 using n = 3 subintervals.

3. Z 3 1 f(x) dx using a right-hand Riemann Sum R4, with n = 4 subintervals

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use upper and lower sums (left and right Riemann sums) to approximate the area of the...
Use upper and lower sums (left and right Riemann sums) to approximate the area of the region below y =sqrt(8x) using 4 subintervals of each width. Round to three decimal places.
Use a graphing calculator Riemann Sum (found here) to find the following Riemann sums. f(x) =...
Use a graphing calculator Riemann Sum (found here) to find the following Riemann sums. f(x) = 2/x   from  a = 1  to  b = 5 (a) Calculate the Riemann sum for the function for the following values of n: 10, 100, and 1000. Use left, right, and midpoint rectangles, making a table of the answers, rounded to three decimal places. n Left Midpoint Right 10 100 1000 (b) Find the exact value of the area under the curve by evaluating an appropriate definite...
Consider the integral ∫12 0 (2?^2+3?+2)?? (a) Find the Riemann sum for this integral using left...
Consider the integral ∫12 0 (2?^2+3?+2)?? (a) Find the Riemann sum for this integral using left endpoints and ?=4 L4= (b) Find the Riemann sum for this same integral, using right endpoints and ?=4 R4=
5. A problem to connect the Riemann sum and the Fundamental Theorem of Calculus: (a) Evaluate...
5. A problem to connect the Riemann sum and the Fundamental Theorem of Calculus: (a) Evaluate the Riemann sum for f(x) = x 3 + 2 for 0 ≤ x ≤ 3 with five subintervals, taking the sample points to be right endpoints. (b) Use the formal definition of a definite integral with right endpoints to calculate the value of the integral. Z 3 0 (x 3 + 2) dx. Note: This is the definition with limn→∞ Xn i=1 f(xi)∆x...
Approximate the area under the curve over the specified interval by using the indicated number of...
Approximate the area under the curve over the specified interval by using the indicated number of subintervals (or rectangles) and evaluating the function at the right-hand endpoints of the subintervals. f(x) = 25 − x2 from x = 1 to x = 3; 4 subintervals
f(x) = square root x   from  a = 4  to  b = 9 (a) Calculate the Riemann sum for...
f(x) = square root x   from  a = 4  to  b = 9 (a) Calculate the Riemann sum for the function for the following values of n: 10, 100, and 1000. Use left, right, and midpoint rectangles, making a table of the answers, rounded to three decimal places. n Left Midpoint Right 10 100 1000 (b) Find the exact value of the area under the curve by evaluating an appropriate definite integral using the Fundamental Theorem. The values of the Riemann sums from...
1. Evaluate the Riemann sum for f(x) = 2x − 1, −6 ≤ x ≤ 4,...
1. Evaluate the Riemann sum for f(x) = 2x − 1, −6 ≤ x ≤ 4, with five subintervals, taking the sample points to be right endpoints. 2. sketch a graph 3. Explain. The Riemann sum represents the net area of the rectangles with respect to the .....
Evaluate the Riemann sum for f(x)=0.4x−1.8sin(2x)f(x)=0.4x-1.8sin(2x) over the interval [0,2][0,2] using four subintervals, taking the sample...
Evaluate the Riemann sum for f(x)=0.4x−1.8sin(2x)f(x)=0.4x-1.8sin(2x) over the interval [0,2][0,2] using four subintervals, taking the sample points to be right endpoints. R4= step by step with answer please
In the Midpoint Rule for triple integrals we use a triple Riemann sum to approximate a...
In the Midpoint Rule for triple integrals we use a triple Riemann sum to approximate a triple integral over a box B, where f(x, y, z) is evaluated at the center (xi, yj, zk) of the box Bijk. Use the Midpoint Rule to estimate the value of the integral. Divide B into eight sub-boxes of equal size. (Round your answer to three decimal places.) cos(xyz) dV, where B = {(x, y, z) | 0 ≤ x ≤ 2, 0 ≤...
(a) Find the Riemann sum for f(x) = 3 sin(x), 0 ≤ x ≤ 3π/2, with...
(a) Find the Riemann sum for f(x) = 3 sin(x), 0 ≤ x ≤ 3π/2, with six terms, taking the sample points to be right endpoints. (Round your answers to six decimal places.) R6 = (b) Repeat part (a) with midpoints as the sample points. M6 = Express the limit as a definite integral on the given interval. lim n → ∞ n 7xi* + (xi*)2 Δx, [3, 8] i = 1 8 dx 3