Question

Suppose f(x,y,z)=x2+y2+z2f(x,y,z)=x2+y2+z2 and WW is the solid cylinder with height 55 and base radius 44 that...

Suppose f(x,y,z)=x2+y2+z2f(x,y,z)=x2+y2+z2 and WW is the solid cylinder with height 55 and base radius 44 that is centered about the z-axis with its base at z=−1z=−1. Enter θ as theta.

with limits of integration
A = 0
B = 2pi
C = 0
D = 4
E = -1
F = 4


(b). Evaluate the integral

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Evaluate ∫∫Sf(x,y,z)dS , where f(x,y,z)=0.4sqrt(x2+y2+z2)) and S is the hemisphere x2+y2+z2=36,z≥0
Evaluate ∫∫Sf(x,y,z)dS , where f(x,y,z)=0.4sqrt(x2+y2+z2)) and S is the hemisphere x2+y2+z2=36,z≥0
Calculate ∫ ∫S f(x,y,z)dS for the given surface and function. x2+y2+z2=144, 6≤z≤12; f(x,y,z)=z2(x2+y2+z2)−1.
Calculate ∫ ∫S f(x,y,z)dS for the given surface and function. x2+y2+z2=144, 6≤z≤12; f(x,y,z)=z2(x2+y2+z2)−1.
Find the minimum of f(x, y, z) = x2 + y2 + z2 subject to the...
Find the minimum of f(x, y, z) = x2 + y2 + z2 subject to the two constraints x + y + z = 1 and 4x + 5y + 6z = 10
Compute the surface integral over the given oriented surface: F=〈0,9,x2〉F=〈0,9,x2〉 ,  hemisphere x2+y2+z2=4x2+y2+z2=4, z≥0z≥0 ,  outward-pointing normal
Compute the surface integral over the given oriented surface: F=〈0,9,x2〉F=〈0,9,x2〉 ,  hemisphere x2+y2+z2=4x2+y2+z2=4, z≥0z≥0 ,  outward-pointing normal
show that the function f(x,y,z) = 1/√(x2+y2+z2) provides the equation fxx + fyy + fzz =...
show that the function f(x,y,z) = 1/√(x2+y2+z2) provides the equation fxx + fyy + fzz = 0, called the 3−D Laplace equation.
Find the minimum of f(x,y,z) = x2 + y2 + z2 subject to the two constraints...
Find the minimum of f(x,y,z) = x2 + y2 + z2 subject to the two constraints x + 2y + z = 3 and x - y = 4 by answering following questions a) write out the lagrange equation involving lagrange multipliers λ(lamba) and μ(mu) b) solve for lamba in terms of x and y c) solve for x,y,z using the constraints d) determine the minimum value
Find the linear approximation of the function f(x, y, z) = x2 + y2 + z2...
Find the linear approximation of the function f(x, y, z) = x2 + y2 + z2 at (6, 2, 9) and use it to approximate the number 6.012 + 1.972 + 8.982 . (Round your answer to five decimal places.) f(6.01, 1.97, 8.98) ≈
Given the function f(x, y, z) = (x2 + y2 + z2 )−1/2 a) what is...
Given the function f(x, y, z) = (x2 + y2 + z2 )−1/2 a) what is the gradient at the point (12,0,16)? b) what is the directional derivative of f in the direction of the vector u = (1,1,1) at the point (12,0,16)?
Evaluate the surface integral F · dS for the given vector field F and the oriented...
Evaluate the surface integral F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = x2 i + y2 j + z2 k S is the boundary of the solid half-cylinder 0 ≤ z ≤ 4 − y2 , 0 ≤ x ≤ 5
Use the method of Lagrange multipliers to find the minimum value of the function f(x,y,z)=x2+y2+z2 subject...
Use the method of Lagrange multipliers to find the minimum value of the function f(x,y,z)=x2+y2+z2 subject to the constraints x+y=10 and 2y−z=3.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT