Question

1. Sketch the direction field for the following differential equation dy dx = y − x....

1. Sketch the direction field for the following differential equation dy dx = y − x. You may use maple and attach your graph. Also sketch the solution curves with initial conditions y(0) = −1 and y(0) = 1.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the differential equation dy/dx= 2y(x+1) a) sketch a slope field b) Show that any point...
Consider the differential equation dy/dx= 2y(x+1) a) sketch a slope field b) Show that any point with initial condition x = –1 in the 2nd quadrant creates a relative minimum for its particular solution. c)Find the particular solution y=f(x)) to the given differential equation with initial condition f(0) = 2 d)For the solution in part c), find lim x aproaches 0 f(x)-2/tan(x^2+2x)
Consider the direction field of the differential equation dy/dx = x(y − 8)2 − 4, but...
Consider the direction field of the differential equation dy/dx = x(y − 8)2 − 4, but do not use technology to obtain it. Describe the slopes of the lineal elements on the lines x = 0, y = 7, y = 8, and y = 9. x = 0         y = 7      y = 8      y = 9     
Use a slope field plotter to plot the slope field for the differential equation dy/dx=sqrt(x-y) and...
Use a slope field plotter to plot the slope field for the differential equation dy/dx=sqrt(x-y) and plot the solution curve for the initial condition y(2)=2
Consider the differential equation x2 dy + y ( x + y) dx = 0 with...
Consider the differential equation x2 dy + y ( x + y) dx = 0 with the initial condition y(1) = 1. (2a) Determine the type of the differential equation. Explain why? (2b) Find the particular solution of the initial value problem.
find the solution of the first order differential equation (e^x+y + ye^y)dx +(xe^y - 1)dy =0...
find the solution of the first order differential equation (e^x+y + ye^y)dx +(xe^y - 1)dy =0 with initial value y(0)= -1
Solve the Homogeneous differential equation (7 y^2 + 1 xy)dx - 1 x^2 dy = 0...
Solve the Homogeneous differential equation (7 y^2 + 1 xy)dx - 1 x^2 dy = 0 (a) A one-parameter family of solution of the equation is y(x) = (b) The particular solution of the equation subject to the initial condition y(1) =1/7.
(x-y)dx + (y+x)dy =0 Solve the differential equation
(x-y)dx + (y+x)dy =0 Solve the differential equation
(* Problem 3 *) (* Consider differential equations of the form a(x) + b(x)dy /dx=0 *)...
(* Problem 3 *) (* Consider differential equations of the form a(x) + b(x)dy /dx=0 *) \ (* Use mathematica to determin if they are in Exact form or not. If they are, use CountourPlot to graph the different solution curves 3.a 3x^2+y + (x+3y^2)dy /dx=0 3.b cos(x) + sin(x) dy /dx=0 3.c y e^xy+ x e^xydy/dx=0
1) Solve the given differential equation by separation of variables. exy dy/dx = e−y + e−6x...
1) Solve the given differential equation by separation of variables. exy dy/dx = e−y + e−6x − y 2) Solve the given differential equation by separation of variables. y ln(x) dx/dy = (y+1/x)^2 3) Find an explicit solution of the given initial-value problem. dx/dt = 7(x2 + 1),  x( π/4)= 1
Consider the autonomous first-order differential equation dy/dx=4y-(y^3). 1. Classify each critical point as asymptotically stable, unstable,...
Consider the autonomous first-order differential equation dy/dx=4y-(y^3). 1. Classify each critical point as asymptotically stable, unstable, or semi-stable. (DO NOT draw the phase portrait and DO NOT sketch the solution curves) 2. Solve the Bernoulli differential equation dy/dx=4y-(y^3).