Question

Find the particular antiderivative that satisfies the following conditions: A) p'(x)=-20/X^2 ; p(4)=3 B) p'(x)=2x^2-7x ;...

Find the particular antiderivative that satisfies the following conditions:

A) p'(x)=-20/X^2 ; p(4)=3

B) p'(x)=2x^2-7x ; p(0)=3,000

C) Consider the function f(x)=3cos⁡x−7sin⁡x.
Let F(x) be the antiderivative of f(x) with F(0)=7

D) A particle is moving as given by the data: v(t)=4sin(t)-7cos(t) ; s(0)=0

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1) Find the antiderivative if f′(x)=x^6−2x^−2+5 and f(1)=0 2)Find the position function if the velocity is...
1) Find the antiderivative if f′(x)=x^6−2x^−2+5 and f(1)=0 2)Find the position function if the velocity is v(t)=4sin(4t) and s(0)=0
(a) Find the most general antiderivative of the function f(x) = −x^ −1 + 5√ x...
(a) Find the most general antiderivative of the function f(x) = −x^ −1 + 5√ x / x 2 −=4 csc^2 x (b) A particle is moving with the given data, where a(t) is acceleration, v(t) is velocity and s(t) is position. Find the position function s(t) of the particle. a(t) = 12t^ 2 − 4, v(0) = 3, s(0) = −1
Find the most general antiderivative of the function. (Check your answer by differentiation. Use C for...
Find the most general antiderivative of the function. (Check your answer by differentiation. Use C for the constant of the antiderivative.) f(x) = 4x + 7 f(x)= Find the most general antiderivative of the function. (Check your answer by differentiation. Use C for the constant of the antiderivative.) f(x) = 9 x8 f(x)= f '(t) = sec(t)(sec(t) + tan(t)),    −− π/ 2 < t < π/ 2 , f ( π/ 4) = −3 f(t)= Find f. f '''(x) = cos(x),    f(0)...
For f(x) = 3 + 7x − 19x^2 + 2x^4, use complete Horner’s algorithm to find...
For f(x) = 3 + 7x − 19x^2 + 2x^4, use complete Horner’s algorithm to find (a) the Maclaurin series (Taylor series about x = 0) (b) the Taylor series for this function about x = 2.
For 1 and 2, give a function f that satisfies the given conditions. 1. f '...
For 1 and 2, give a function f that satisfies the given conditions. 1. f ' (x) = x^5 + 1 + 2 sec x tan x with f(0) = 4 2. f '' (x) = 12x + sin x with f(0) = 3 and f ' (0) = 7
1. Consider the function f(x) = 2x^2 - 7x + 9 a) Find the second-degree Taylor...
1. Consider the function f(x) = 2x^2 - 7x + 9 a) Find the second-degree Taylor series for f(x) centered at x = 0. Show all work. b) Find the second-degree Taylor series for f(x) centered at x = 1. Write it as a power series centered around x = 1, and then distribute all terms. What do you notice?
1. Let f(x)=−x^2+13x+4 a.Find the derivative f '(x) b. Find f '(−3) 2. Let f(x)=2x^2−4x+7/5x^2+5x−9, evaluate...
1. Let f(x)=−x^2+13x+4 a.Find the derivative f '(x) b. Find f '(−3) 2. Let f(x)=2x^2−4x+7/5x^2+5x−9, evaluate f '(x) at x=3 rounded to 2 decimal places. f '(3)= 3. Let f(x)=(x^3+4x+2)(160−5x) find f ′(x). f '(x)= 4. Find the derivative of the function f(x)=√x−5/x^4 f '(x)= 5. Find the derivative of the function f(x)=2x−5/3x−3 f '(x)= 6. Find the derivative of the function g(x)=(x^4−5x^2+5x+4)(x^3−4x^2−1). You do not have to simplify your answer. g '(x)= 7. Let f(x)=(−x^2+x+3)^5 a. Find the derivative....
7. (a) Sketch a graph of a function f(x) that satisfies all of the following conditions....
7. (a) Sketch a graph of a function f(x) that satisfies all of the following conditions. i. f(2) = 3 and f(1) = −1 ii. lim x→−4 f(x) = −∞ iii. limx→∞ f(x) = 1 iv. lim x→−∞ f(x) = −2 v. lim x→−1+ f(x) = ∞ vi. lim x→−1− f(x) = −∞ vii. f 0 (x) > 0 on (−4, −3.5) ∪ (−2.5, −1.5) ∪ (1, 2) ∪ (2, ∞) viii. f 0 (x) < 0 on (−∞, −4)...
Evaluate the following: 1) ∫ 4? ?? and determine C if the antiderivative F(x) satisfies F(2)...
Evaluate the following: 1) ∫ 4? ?? and determine C if the antiderivative F(x) satisfies F(2) = 12. 2) ∫4???= 3) ∫( ?5 + 7 ?2 + 3 ) ?? = 4) ∫ ?4( ?5 + 3 )6 ?? = 5)∫4?3 ??=?4+ 3 6) ∫ ?2 sec2(?3) ?tan(?3)?? 7 ) ∫ 53 ? 13 ? ? = 8) ∫ ln8(?) ?? =? 9) ∫ 3 ln(?3) ?? =? 10) ∫ 4?3 sin3(?4) cos(?4) ?? = 11) ∫6?55?6??= 12) ∫???2(3?)??= 13)...
1.Find ff if f′′(x)=2+cos(x),f(0)=−7,f(π/2)=7.f″(x)=2+cos⁡(x),f(0)=−7,f(π/2)=7. f(x)= 2.Find f if f′(x)=2cos(x)+sec2(x),−π/2<x<π/2,f′(x)=2cos⁡(x)+sec2⁡(x),−π/2<x<π/2, and f(π/3)=2.f(π/3)=2. f(x)= 3. Find ff if...
1.Find ff if f′′(x)=2+cos(x),f(0)=−7,f(π/2)=7.f″(x)=2+cos⁡(x),f(0)=−7,f(π/2)=7. f(x)= 2.Find f if f′(x)=2cos(x)+sec2(x),−π/2<x<π/2,f′(x)=2cos⁡(x)+sec2⁡(x),−π/2<x<π/2, and f(π/3)=2.f(π/3)=2. f(x)= 3. Find ff if f′′(t)=2et+3sin(t),f(0)=−8,f(π)=−9. f(t)= 4. Find the most general antiderivative of f(x)=6ex+9sec2(x),f(x)=6ex+9sec2⁡(x), where −π2<x<π2. f(x)= 5. Find the antiderivative FF of f(x)=4−3(1+x2)−1f(x)=4−3(1+x2)−1 that satisfies F(1)=8. f(x)= 6. Find ff if f′(x)=4/sqrt(1−x2)  and f(1/2)=−9.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT