1.
a) Use the Chain Rule to calculate the partial derivatives. Express the answer in terms of the independent variables.
∂f |
∂r |
∂f |
∂t |
; f(x, y, z) = xy + z2, x = r + s − 2t, y = 6rt, z = s2
|
= | |||
|
= |
b) Use the Chain Rule to calculate the partial derivative. Express the answer in terms of the independent variables.
∂F |
∂y |
; F(u, v) = eu+v, u = x5, v = 2xy
∂F |
∂y |
=
c)
Use the Chain Rule to calculate the partial derivative. Express the answer in terms of the independent variables.
∂f |
∂u |
; f(x, y) = x2 + y2, x = eu+v, y = 2u + 4v
∂f |
∂u |
=
Get Answers For Free
Most questions answered within 1 hours.