Question

Suppose φ:Q→Z is a homomorphism (both groups are under addition). Prove that φ is the zero...

Suppose φ:Q→Z is a homomorphism (both groups are under addition). Prove that φ is the zero map, i.e., φ(x) = 0 for all x ∈ Q.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose G, H be groups and φ : G → H be a group homomorphism. Then...
Suppose G, H be groups and φ : G → H be a group homomorphism. Then the for any subgroup K of G, the image φ (K) = {y ∈ H | y = f(x) for some x ∈ G} is a group a group in H.
Let φ:G ——H be a group homomorphism and K=ker(φ). Assume that xK=yK. Prove that φ(x)=φ(y)
Let φ:G ——H be a group homomorphism and K=ker(φ). Assume that xK=yK. Prove that φ(x)=φ(y)
Suppose φ : G → G′ is an isomorphism. (a) Prove that φ(Z(G)) = Z(G′). (b)...
Suppose φ : G → G′ is an isomorphism. (a) Prove that φ(Z(G)) = Z(G′). (b) Prove that |g| = |φ(g)| for all g ∈ G
Prove the following theorem: Let φ: G→G′ be a group homomorphism, and let H=ker(φ). Let a∈G.Then...
Prove the following theorem: Let φ: G→G′ be a group homomorphism, and let H=ker(φ). Let a∈G.Then the set (φ)^{-1}[{φ(a)}] ={x∈G|φ(x)} =φ(a) is the left coset aH of H, and is also the right coset Ha of H. Consequently, the two partitions of G into left cosets and into right cosets of H are the same
Let G be an Abelian group. Let k ∈ Z be nonzero. Define φ : G...
Let G be an Abelian group. Let k ∈ Z be nonzero. Define φ : G → G by φ(x) = x^ k . (a) Prove that φ is a group homomorphism. (b) Assume that G is finite and |G| is relatively prime to k. Prove that Ker φ = {e}.
Suppose G and H are groups and ϕ:G -> H is a homomorphism. Let N be...
Suppose G and H are groups and ϕ:G -> H is a homomorphism. Let N be a normal subgroup of G contained in ker(ϕ). Define a mapping ψ: G/N -> H by ψ (aN)= ϕ (a) for all a in G. Prove that ψ is a well-defined homomorphism from G/N to H. Is ψ always an isomorphism? Prove it or give a counterexample
1. Which of the following sets in (a) are groups under addition? For each set which...
1. Which of the following sets in (a) are groups under addition? For each set which is not a group under addition, show which group property does not apply by counterexample. a. N; W; Z; Q; R; E; C; P(x, 3); M(2,1,N) .
) In the Extra Problem on PS 2 we defined a map φ:M2,2(Z) → M2,2(Z2) by...
) In the Extra Problem on PS 2 we defined a map φ:M2,2(Z) → M2,2(Z2) by the formula φ a b c d = a mod (2) b mod (2) c mod (2) d mod (2) On PS 2 you showed that φ is a ring homomorphism and that ker(φ) = 2a 2b 2c 2d a, b, c, d ∈ Z We know the kernel of any ring homomorphism is an ideal. Let I = ker(φ). (a) (6 points) The...
Prove that the set V of all polynomials of degree ≤ n including the zero polynomial...
Prove that the set V of all polynomials of degree ≤ n including the zero polynomial is vector space over the field R under usual polynomial addition and scalar multiplication. Further, find the basis for the space of polynomial p(x) of degree ≤ 3. Find a basis for the subspace with p(1) = 0.
Let R = {0, 2, 4, 6, 8} under addition and multiplication modulo 10. Prove that...
Let R = {0, 2, 4, 6, 8} under addition and multiplication modulo 10. Prove that R is a field.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT