Question

. The point P = (0, 2, 1) is on the surface 2x + y +...

. The point P = (0, 2, 1) is on the surface 2x + y + 3z = 5e xyz .

(a) Find a normal vector to the surface at P.

(b) Find an equation for the plane tangent to the surface at P.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
for the surface f(x/y/z)=x3+3x2y2+y3+4xy-z2=0 find any vector that is normal to the surface at the point...
for the surface f(x/y/z)=x3+3x2y2+y3+4xy-z2=0 find any vector that is normal to the surface at the point Q(1,1,3). use this to find the equation of the tangent plane to the surface at q.
Let P be the plane given by the equation 2x + y − 3z = 2....
Let P be the plane given by the equation 2x + y − 3z = 2. The point Q(1, 2, 3) is not on the plane P, the point R is on the plane P, and the line L1 through Q and R is orthogonal to the plane P. Let W be another point (1, 1, 3). Find parametric equations of the line L2 that passes through points W and R.
Find the equation for the tangent plane to the surface z=(xy)/(y+x) at the point P(1,1,1/2).
Find the equation for the tangent plane to the surface z=(xy)/(y+x) at the point P(1,1,1/2).
An implicitly defined function of x, y and z is given along with a point P...
An implicitly defined function of x, y and z is given along with a point P that lies on the surface: sin(xy) + cos(yz) = 0, at P = (2, π/12, 4) Use the gradient ∇F to: (a) find the equation of the normal line to the surface at P. (b) find the equation of the plane tangent to the surface at P.
Find an equation of the tangent plane to the surface z=−3x2−1y2−2x+1y−1 at the point (4, 2,...
Find an equation of the tangent plane to the surface z=−3x2−1y2−2x+1y−1 at the point (4, 2, -59). z=________
let S be the surface defined by x^4-2x^2y^2+3z^2=12, Find the equation of the tangent plane to...
let S be the surface defined by x^4-2x^2y^2+3z^2=12, Find the equation of the tangent plane to the surface S at (0,1,2).
Find the equation for tangent plane to the surface z=5e^yx^2 at the point P(1,0,5) Options Given:...
Find the equation for tangent plane to the surface z=5e^yx^2 at the point P(1,0,5) Options Given: 1. z +10x - 5y = 5 2. z + 10x - 5y = -5 3. z - 10x - 5y = -5 4. z-10x - 5y = 5
(a) Find an equation of the plane tangent to the surface xy ln x − y^2...
(a) Find an equation of the plane tangent to the surface xy ln x − y^2 + z^2 + 5 = 0 at the point (1, −3, 2) (b) Find the directional derivative of f(x, y, z) = xy ln x − y^2 + z^2 + 5 at the point (1, −3, 2) in the direction of the vector < 1, 0, −1 >. (Hint: Use the results of partial derivatives from part(a))
We are given a level surface F ( x , y , z ) = 0...
We are given a level surface F ( x , y , z ) = 0 where F ( x , y , z ) = x^3 - y^2 + z^4 - 20 . Find the equation of the tangent plane to the surface at the point P ( 2 , 2 , 2 ) . Write the final answer in the form a x + b y + c z + d = 0
f(x,y)=x^2+4xy-y^2 find an equation for the tangent plane at the surface point (2,1,11)
f(x,y)=x^2+4xy-y^2 find an equation for the tangent plane at the surface point (2,1,11)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT