Question

Evaluate the following: 1) ∫ 4? ?? and determine C if the antiderivative F(x) satisfies F(2)...

Evaluate the following:
1) ∫ 4? ?? and determine C if the antiderivative F(x) satisfies F(2) = 12.

2) ∫4???=

3) ∫( ?5 + 7 ?2 + 3 ) ?? =

4) ∫ ?4( ?5 + 3 )6 ?? =

5)∫4?3 ??=?4+ 3

6) ∫ ?2 sec2(?3) ?tan(?3)??

7 ) ∫ 53 ? 13 ? ? =

8) ∫ ln8(?) ?? =?

9) ∫ 3 ln(?3) ?? =?

10) ∫ 4?3 sin3(?4) cos(?4) ?? =

11) ∫6?55?6??=

12) ∫???2(3?)??=

13) ∫ ?3+ sin(4?) ?? =?4−cos(4?)+4

14) ∫ ???8(4?)cot(4?) ?? =

15) ∫ sec2(4?) ???5(4?) ?? =

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1.Find ff if f′′(x)=2+cos(x),f(0)=−7,f(π/2)=7.f″(x)=2+cos⁡(x),f(0)=−7,f(π/2)=7. f(x)= 2.Find f if f′(x)=2cos(x)+sec2(x),−π/2<x<π/2,f′(x)=2cos⁡(x)+sec2⁡(x),−π/2<x<π/2, and f(π/3)=2.f(π/3)=2. f(x)= 3. Find ff if...
1.Find ff if f′′(x)=2+cos(x),f(0)=−7,f(π/2)=7.f″(x)=2+cos⁡(x),f(0)=−7,f(π/2)=7. f(x)= 2.Find f if f′(x)=2cos(x)+sec2(x),−π/2<x<π/2,f′(x)=2cos⁡(x)+sec2⁡(x),−π/2<x<π/2, and f(π/3)=2.f(π/3)=2. f(x)= 3. Find ff if f′′(t)=2et+3sin(t),f(0)=−8,f(π)=−9. f(t)= 4. Find the most general antiderivative of f(x)=6ex+9sec2(x),f(x)=6ex+9sec2⁡(x), where −π2<x<π2. f(x)= 5. Find the antiderivative FF of f(x)=4−3(1+x2)−1f(x)=4−3(1+x2)−1 that satisfies F(1)=8. f(x)= 6. Find ff if f′(x)=4/sqrt(1−x2)  and f(1/2)=−9.
Name the Quadrant 1. cot q = -3 , tan q = 2. cot q =...
Name the Quadrant 1. cot q = -3 , tan q = 2. cot q = -3 , tan q = 3. sec q = 1.5 , cos q = 4. cos q = -3/5 , sec q = Solve the identity function 1. tan x / sin x 2. cos t / cot t 3. cos a csc a tan a 4. cot t sec t sin t 5. 1 - cos2 q 6. csc2 q - 1 7....
For 1 and 2, give a function f that satisfies the given conditions. 1. f '...
For 1 and 2, give a function f that satisfies the given conditions. 1. f ' (x) = x^5 + 1 + 2 sec x tan x with f(0) = 4 2. f '' (x) = 12x + sin x with f(0) = 3 and f ' (0) = 7
Bag Blue Orange Green Yellow Red Brown Total Number of Candies 1 7 23 9 11...
Bag Blue Orange Green Yellow Red Brown Total Number of Candies 1 7 23 9 11 4 6 60 2 16 16 4 7 9 4 56 3 14 14 3 10 5 11 57 4 13 14 7 8 8 6 56 5 18 12 7 10 5 7 59 6 12 9 11 9 8 8 57 7 15 16 6 6 6 8 57 8 15 17 8 4 6 7 57 9 12 14 10 5...
Hi, please solve this below antiderivatives ( integration) questions. Thanks Find the antiderivative using proper symbolism...
Hi, please solve this below antiderivatives ( integration) questions. Thanks Find the antiderivative using proper symbolism ( BIG S and dx) Show detail steps 1- ln( e )^ x squared 2- sinx cosx 3- cos x / sin x 4- 3x ^ 3 - 4 x ^ 2 + 7x. + pi 5- ( sec x ) ^ 2 tanx 6- 3 ^ 1/2 - 4 x ^ -2 7- ( 2x ^ 2 - 8x ) ( 2x -4...
1. Differentiate the following functions. Do not simplify. (a) f(x) = x^7 tan(x) (b) g(x) =...
1. Differentiate the following functions. Do not simplify. (a) f(x) = x^7 tan(x) (b) g(x) = sin(x) / 5x + ex (c) h(x) = (x^4 + 3x^2 - 6)^5 (d) i(x) = 4e^sin(9x) (e) j(x) = ln(x) / x5 (f) k(x) = ln(cot(x)) (g) L(x) = 4 csc^-1 (x2) (h) m(x) = sin(x) / cosh(x) (i) n(x) = 2 tanh^-1 (x4 + 1)
Find the particular antiderivative that satisfies the following conditions: A) p'(x)=-20/X^2 ; p(4)=3 B) p'(x)=2x^2-7x ;...
Find the particular antiderivative that satisfies the following conditions: A) p'(x)=-20/X^2 ; p(4)=3 B) p'(x)=2x^2-7x ; p(0)=3,000 C) Consider the function f(x)=3cos⁡x−7sin⁡x. Let F(x) be the antiderivative of f(x) with F(0)=7 D) A particle is moving as given by the data: v(t)=4sin(t)-7cos(t) ; s(0)=0
Find the most general antiderivative of the function. (Check your answer by differentiation. Use C for...
Find the most general antiderivative of the function. (Check your answer by differentiation. Use C for the constant of the antiderivative.) f(x) = 4x + 7 f(x)= Find the most general antiderivative of the function. (Check your answer by differentiation. Use C for the constant of the antiderivative.) f(x) = 9 x8 f(x)= f '(t) = sec(t)(sec(t) + tan(t)),    −− π/ 2 < t < π/ 2 , f ( π/ 4) = −3 f(t)= Find f. f '''(x) = cos(x),    f(0)...
Using the methods in Section 11.1, test the hypothesis (α = 0.05) that the population proportions...
Using the methods in Section 11.1, test the hypothesis (α = 0.05) that the population proportions of red and brown are equal (pred = pbrown). You are testing if their proportions are equal to one another. NOTE: These are NOT independent samples, but we will use this approach anyway to practice the method. This also means that n1 and n2 will both be the total number of candies in all the bags. The “x” values for red and brown are...
evaluate each indefinite integral 4) \int -(2*csc^(2)2x)/(cot(2x)*\sqrt(cot^(2)2x-1)); u=cot2x 5)  \int (10x^(4))/(9+4x^(10)); u=2x^(5) 6) \int (20x^(3))/(\sqrt(25-25x^(8))) 7) \int...
evaluate each indefinite integral 4) \int -(2*csc^(2)2x)/(cot(2x)*\sqrt(cot^(2)2x-1)); u=cot2x 5)  \int (10x^(4))/(9+4x^(10)); u=2x^(5) 6) \int (20x^(3))/(\sqrt(25-25x^(8))) 7) \int (1)/(x\sqrt(25-(ln-2x)^(2)))
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT