Question

Consider the function f(x, y) = 3e^(2y)cos x. (a) Find the value of the direction derivative...

Consider the function f(x, y) = 3e^(2y)cos x.

(a) Find the value of the direction derivative of f at the point (1, 0) in the direction
of the point (2, 1).
(b) Find the direction of maximum increase of f from the point (π, 1).
Find the rate of that max increase.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find the maximum value of the directional derivative of the function f(x,y)=cos(3x+2y) at the point (π/6,−π/8)....
Find the maximum value of the directional derivative of the function f(x,y)=cos(3x+2y) at the point (π/6,−π/8). Give an exact answer.
Consider the function f(x, y) = sin(2x − 2y) (a) Solve and find the gradient of...
Consider the function f(x, y) = sin(2x − 2y) (a) Solve and find the gradient of the function. (b) Find the directional derivative of the function at the point P(π/2,π/6) in the direction of the vector v = <sqrt(3), −1>   (c) Compute the unit vector in the direction of the steepest ascent at A (π/2,π/2)
(9) (a)Find the double integral of the function f (x, y) = x + 2y over...
(9) (a)Find the double integral of the function f (x, y) = x + 2y over the region in the plane bounded by the lines x = 0, y = x, and y = 3 − 2x. (b)Find the maximum and minimum values of 2x − 6y + 5 subject to the constraint x^2 + 3(y^2) = 1. (c)Consider the function f(x,y) = x^2 + xy. Find the directional derivative of f at the point (−1, 3) in the direction...
Find the directional derivative of the function f(x,y)=x^6+y^3/(x+y+6 ) at the point (2,-2) in the direction...
Find the directional derivative of the function f(x,y)=x^6+y^3/(x+y+6 ) at the point (2,-2) in the direction of the vector < - 2 ,2>. b) Also find the maximum rate of change of f at the given point and the unit vector of the direction in which the maximum occurs.
Find the directional derivative of f at the given point in the direction indicated by the...
Find the directional derivative of f at the given point in the direction indicated by the angle θ. f(x, y) = y cos(xy),    (0, 1),    θ = π/4
Let f (x, y) = 100 sin(π(x−2y))/(1+x^2+y^2) . Find the directional derivative of f 1+x^2+y^2 at...
Let f (x, y) = 100 sin(π(x−2y))/(1+x^2+y^2) . Find the directional derivative of f 1+x^2+y^2 at the point (10, 6) in the direction of: (a) u = 3 i − 2 j (b) v = −i + 4 j
. For the function f(x, y) = xye^x−y , at the point (2, 2) (a) find...
. For the function f(x, y) = xye^x−y , at the point (2, 2) (a) find the gradient. (b) find the directional derivative in the direction of the vector 3i − j. (c) in the direction of which unit vector is the rate of increase maximum? What is the maximum rate of increase? (d) in the direction of which unit vector(s) is the directional derivative zero?
find the directional derivative of f(x,y) = x^2y^3 +2x^4y at the point (3,-1) in the direction...
find the directional derivative of f(x,y) = x^2y^3 +2x^4y at the point (3,-1) in the direction theta= 5pi/6 the gradient of f is f(x,y)= the gradient of f (3,-1)= the directional derivative is:
) Consider the function f(x,y)=−2x^2−y^2. Find the the directional derivative of ff at the point (1,−3)(1,−3)...
) Consider the function f(x,y)=−2x^2−y^2. Find the the directional derivative of ff at the point (1,−3)(1,−3) in the direction given by the angle θ=π/2. Find the unit vector which describes the direction in which ff is increasing most rapidly at (1,−3).
Find the general solution y(x) y’’ - y’ + 2y = 3e^x + 4 cos 2x...
Find the general solution y(x) y’’ - y’ + 2y = 3e^x + 4 cos 2x Need this not hand writen please type out, will rate the person.