Question

Given: f(x) = x^3 + 3x^2 - 9x + 10. (Note: x^3 means x-cubed, and x^2...

Given: f(x) = x^3 + 3x^2 - 9x + 10. (Note: x^3 means x-cubed, and x^2 means x-squared, respectively.)

use simple words, and use mathematical equations and symbols when and if necessary, to explain yourself

Discussed the following: the first and second derivative of f(x); intervals where the curve is increasing and decreasing, respectively; the critical points; the relative maximum and minimum points; the point of inflection; where the curve is concave upward or downward.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
given function f(x)=-x^3+5x^2-3x+2 A) Determine the intervals where F(x) Is increasing and decreasing b) use your...
given function f(x)=-x^3+5x^2-3x+2 A) Determine the intervals where F(x) Is increasing and decreasing b) use your answer from a to determine any relative maxima or minima of the function c) Find that intervals where f(x) is concave up and concave down and any points of inflection
Given the function f(x) = x3 - 3x2 - 9x + 10 Find the intervals where...
Given the function f(x) = x3 - 3x2 - 9x + 10 Find the intervals where it is increasing and decreasing and find the co-ordinates of the relative maximums & minimums. Find the intervals where it is concave up and down and co-ordinates of any inflection points Graph the f(x) 
4. Given the function y = f(x) = 2x^3 + 3x^2 – 12x + 2 a....
4. Given the function y = f(x) = 2x^3 + 3x^2 – 12x + 2 a. Find the intervals where f is increasing/f is decreasing b. Find the intervals where f is concave up/f is concave down c. Find all relative max and relative min (state which is which and why) d. Find all inflection points (also state why)
consider the function f(x)=3x-5/sqrt x^2+1. given f'(x)=5x+3/(x^2+1)^3/2 and f''(x)=-10x^2-9x+5/(x^2+1)^5/2 a) find the local maximum and minimum...
consider the function f(x)=3x-5/sqrt x^2+1. given f'(x)=5x+3/(x^2+1)^3/2 and f''(x)=-10x^2-9x+5/(x^2+1)^5/2 a) find the local maximum and minimum values. Justify your answer using the first or second derivative test . round your answers to the nearest tenth as needed. b)find the intervals of concavity and any inflection points of f. Round to the nearest tenth as needed. c)graph f(x) and label each important part (domain, x- and y- intercepts, VA/HA, CN, Increasing/decreasing, local min/max values, intervals of concavity/ inflection points of f?
For the curve f(x) = 2x 3 − 9x 2 + 12x − 5, find (i)...
For the curve f(x) = 2x 3 − 9x 2 + 12x − 5, find (i) the local maximum and minimum values, (ii), the intervals on which f is increasing or decreasing, and (iii) the intervals of concavity and the inflection points.
Consider the function f(x) = x^2/x-1 with f ' (x) = x^2-2x/ (x - 1)^2 and...
Consider the function f(x) = x^2/x-1 with f ' (x) = x^2-2x/ (x - 1)^2 and f '' (x) = 2 / (x - 1)^3 are given. Use these to answer the following questions. (a) [5 marks] Find all critical points and determine the intervals where f(x) is increasing and where it is decreasing, use the First Derivative Test to fifind local extreme value if any exists. (b) Determine the intervals where f(x) is concave upward and where it is...
Let f (x) = 3x^4 −4x^3 −12x^2 + 1, defined on R. (a) Find the intervals...
Let f (x) = 3x^4 −4x^3 −12x^2 + 1, defined on R. (a) Find the intervals where f is increasing, and decreasing. (b) Find the intervals where f is concave up, and concave down. (c) Find the local maxima, the local minima, and the points of inflection. (d) Find the Maximum and Minimum Absolute of f over [−2.3]
Use the second derivative to find the intervals where f(x) = x4+8x3 is concave upward and...
Use the second derivative to find the intervals where f(x) = x4+8x3 is concave upward and concave downward. Also find any points of inflection.
Given the function g(x) = x3-3x + 1, use the first and second derivative tests to...
Given the function g(x) = x3-3x + 1, use the first and second derivative tests to (a) Find the intervals where g(x) is increasing and decreasing. (b) Find the points where the function reaches all realtive maxima and minima. (c) Determine the intervals for which g(x) is concave up and concave down. (d) Determine all points of inflection for g(x). (e) Graph g(x). Label your axes, extrema, and point(s) of inflection.
Let f(x)=2x^3 - 9x^2 +12x -4 Find the intervals of which f is increasing or decreasing...
Let f(x)=2x^3 - 9x^2 +12x -4 Find the intervals of which f is increasing or decreasing Find the local maximum and minimum values of f Find the intervals of concavity and the inflection points