Question

A rectangular box is to have a square base and a volume of 20 ft3. If...

A rectangular box is to have a square base and a volume of 20 ft3. If the material for the base costs $0.37/ft2, the material for the sides costs $0.10/ft2, and the material for the top costs $0.13/ft2, determine the dimensions (in ft) of the box that can be constructed at minimum cost.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A rectangular box is to have a square base and a volume of 20 ft3. If...
A rectangular box is to have a square base and a volume of 20 ft3. If the material for the base costs $0.17/ft2, the material for the sides costs $0.06/ft2, and the material for the top costs $0.13/ft2, (a) determine the dimensions (in ft) of the box that can be constructed at minimum cost. (b) Which theorem did you use to find the answer?
A rectangular box is to have a square base and a volume of 16 ft3. If...
A rectangular box is to have a square base and a volume of 16 ft3. If the material for the base costs $0.14/ft2, the material for the sides costs $0.06/ft2, and the material for the top costs $0.10/ft2, determine the dimensions (in ft) of the box that can be constructed at minimum cost. (Refer to the figure below.) A closed rectangular box has a length of x, a width of x, and a height of y.
Minimizing Packaging Costs A rectangular box is to have a square base and a volume of...
Minimizing Packaging Costs A rectangular box is to have a square base and a volume of 20 ft3. If the material for the base costs $0.28/ft2, the material for the sides costs $0.10/ft2, and the material for the top costs $0.22/ft2, determine the dimensions (in ft) of the box that can be constructed at minimum cost. (Refer to the figure below.) A closed rectangular box has a length of x, a width of x, and a height of y. x...
A rectangular box is to have a square base and a volume of 48 ft3. If...
A rectangular box is to have a square base and a volume of 48 ft3. If the material for the base costs 4 cents per square foot, material for the top costs 20 cents per square foot, and the material for the sides costs 16 cents per square foot, determine the dimensions of the square base (in feet) that minimize the total cost of materials used in constructing the rectangular box.
A rectangular box is to have a square base and a volume of 40 ft^3. If...
A rectangular box is to have a square base and a volume of 40 ft^3. If the material for the base costs $0.36/ft^2, the material for the sides costs $0.05/f^2, and the material for the top costs $0.14/ft^2, determine the dimensions of the box that can be constructed at minimum cost. length____ft width____ ft height________ ft
A rectangular box is to have a square base and a volume of 45 ft3. If...
A rectangular box is to have a square base and a volume of 45 ft3. If the material for the base costs 14 cents per square foot, material for the top costs 6 cents per square foot, and the material for the sides costs 6 cents per square foot, determine the dimensions of the square base (in feet) that minimize the total cost of materials used in constructing the rectangular box.
A 10 ft3 capacity rectangular box with open top is to be constructed so that the...
A 10 ft3 capacity rectangular box with open top is to be constructed so that the length of the base of the box will be twice as long as its width. The material for the bottom of the box costs 20 cents per square foot and the material for the sides of the box costs 10 cents per square foot. Find the dimensions of the least expensive box that can be constructed.
Find the dimensions and volume of the box of maximum volume that can be constructed. The...
Find the dimensions and volume of the box of maximum volume that can be constructed. The rectangular box having a top and a square base is to be constructed at a cost of $4. If the material for the bottom costs $0.10 per square foot, the material for the top costs $0.35 per square foot, and the material for the sides costs $0.25 per square foot,
A company plans to manufacture a rectangular box with a square base, an open top, and...
A company plans to manufacture a rectangular box with a square base, an open top, and a volume of 404 cm3. The cost of the material for the base is 0.5 cents per square centimeter, and the cost of the material for the sides is 0.1 cents per square centimeter. Determine the dimensions of the box that will minimize the cost of manufacturing it. What is the minimum cost?
There is an open-topped box that will have 5 sides.. The box to contain a volume...
There is an open-topped box that will have 5 sides.. The box to contain a volume of 6 ft3 and to have a square base. The base needs a stronger material which costs $3 per ft2. For the other sides I’ll use a material that costs $2 per ft2. What are the dimensions of the box that minimize the cost?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT