Question

Find the solution where k is a constant greater than 3 dy/dt -ky = e^3t -...

Find the solution where k is a constant greater than 3

dy/dt -ky = e^3t - 5

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
find the general solution of the differential equation dy/dt - 2y = t^2 * e^2t
find the general solution of the differential equation dy/dt - 2y = t^2 * e^2t
Find the general solution to the following: [(e^t)y-t(e^t)]dt+[1+(e^t)]dy=0
Find the general solution to the following: [(e^t)y-t(e^t)]dt+[1+(e^t)]dy=0
Find the general solution of the system dx/dt = 2x + 3y dy/dt = 5y Determine...
Find the general solution of the system dx/dt = 2x + 3y dy/dt = 5y Determine the initial conditions x(0) and y(0) such that the solutions x(t) and y(t) generates a straight line solution. That is y(t) = Ax(t) for some constant A.
dy/dx=5y/x^3 where y(8)=e. Find the particular solution.
dy/dx=5y/x^3 where y(8)=e. Find the particular solution.
Find the general solution to the system: dx/dt = -4x + 3y dy/dt = -5x/2 +...
Find the general solution to the system: dx/dt = -4x + 3y dy/dt = -5x/2 + 2y
find the solution for the DE dy/dt +ty^3 +y/t = 0 answer explicitly if passible
find the solution for the DE dy/dt +ty^3 +y/t = 0 answer explicitly if passible
Initial value problem : Differential equations: dx/dt = x + 2y dy/dt = 2x + y...
Initial value problem : Differential equations: dx/dt = x + 2y dy/dt = 2x + y Initial conditions: x(0) = 0 y(0) = 2 a) Find the solution to this initial value problem (yes, I know, the text says that the solutions are x(t)= e^3t - e^-t and y(x) = e^3t + e^-t and but I want you to derive these solutions yourself using one of the methods we studied in chapter 4) Work this part out on paper to...
dy/dt = x- (1/2)y dy/dt =2x +3y a)matrix form b)find eigenvalues/eigenvectors c)genreal solution
dy/dt = x- (1/2)y dy/dt =2x +3y a)matrix form b)find eigenvalues/eigenvectors c)genreal solution
Find the general solution to the given differential equation. 1+(1+ty)e^ty+(1+t^2e^ty) dy/dt=0
Find the general solution to the given differential equation. 1+(1+ty)e^ty+(1+t^2e^ty) dy/dt=0
Find the general solution. Explain and show all steps. [(e^t)y - t(e^t)] dt + [1 +...
Find the general solution. Explain and show all steps. [(e^t)y - t(e^t)] dt + [1 + (e^t)] dy = 0
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT