Question

A cylindrical can open at the top is to have volume 24, 000π cm3 . The...

A cylindrical can open at the top is to have volume 24, 000π cm3 . The material for the base of the can costs three times as much as the material for the rest of the can. What are the dimensions of the can of minimum cost?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A box with a square base and open top must have a volume of 202612 cm3....
A box with a square base and open top must have a volume of 202612 cm3. We wish to find the dimensions of the box that minimize the amount of material used. (Round your answer to the nearest tenthousandths if necessary.) Length = Width = Height =
A box with a square base and open top must have a volume of 296352 cm3....
A box with a square base and open top must have a volume of 296352 cm3. We wish to find the dimensions of the box that minimize the amount of material used. (Round your answer to the nearest tenthousandths if necessary.) Length = Width = Height =
A cylindrical can, open at the top, is to hold 220 cm3 of liquid. Find the...
A cylindrical can, open at the top, is to hold 220 cm3 of liquid. Find the height and radius that minimize the amount of material needed to manufacture the can. Enter your answer with rational exponents, and use pi to represent ?.
A company wants to design an open top cylindrical bin with volume of 250 cm3. What...
A company wants to design an open top cylindrical bin with volume of 250 cm3. What dimensions, which are the radius r and height h, will minimize the total surface area of the bin? Round to one decimal place. (hint: consider bin disassembled for area of the side) Geometry formulas: Area of a circle is ? = ??2, Volume of a cylinder is ? = ??2h, and circumference of a circle is ? = 2??. Use ? = 3.14
A box with square base and open top is to have a volume of 10?3 ....
A box with square base and open top is to have a volume of 10?3 . Material for the base costs $10 per square meter and material for the sides costs $8 per square meter. Determine the dimensions of the cheapest such container. Use the first or second derivative test to verify that your answer is a minimum.
A cylindrical can, open at the top, is to hold 830 cm3 of liquid. Find the...
A cylindrical can, open at the top, is to hold 830 cm3 of liquid. Find the height and radius that minimize the amount of material needed to manufacture the can. Enter your answer with rational exponents, and use pi to represent π
An open-top box has a square bottom and is made to have a volume of 50in^3....
An open-top box has a square bottom and is made to have a volume of 50in^3. The material for the base costs $10 a sq in and the material for the sides is $6 a sq in. What dimensions minimize cost
A company plans to manufacture a rectangular box with a square base, an open top, and...
A company plans to manufacture a rectangular box with a square base, an open top, and a volume of 404 cm3. The cost of the material for the base is 0.5 cents per square centimeter, and the cost of the material for the sides is 0.1 cents per square centimeter. Determine the dimensions of the box that will minimize the cost of manufacturing it. What is the minimum cost?
An open$top aquarium is have a rectangular base that is three times as long as it...
An open$top aquarium is have a rectangular base that is three times as long as it is wide. The sides of the aquarium are made of glass that costs $10 per square foot and the material for the bottom costs $8 per square foot. Assuming that the cost of the aquarium materials cannot exceed $200, determine the dimensions of the aquarium with the greatest volume.
ASAP A company plans to manufacture a rectangular container with a square base, an open top,...
ASAP A company plans to manufacture a rectangular container with a square base, an open top, and a volume of 320 cm3. The cost of the material for the base is 0.8 cents per square centimeter, and the cost of the material for the sides is 0.2 cents per square centimeter. Determine the dimensions of the container that will minimize the cost of manufacturing it. What is the minimum cost?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT