Question

Calculate two iterations of Newton's Method to approximate a zero of the function using the given...

Calculate two iterations of Newton's Method to approximate a zero of the function using the given initial guess. (Round your answers to four decimal places.)
f(x) = cos x, x1 = 0.8
n
xn
f(xn)
f '(xn)
f(xn)
f '(xn)
xn −
f(xn)
f '(xn)
1
2

Homework Answers

Answer #1

Answers( Rounded) :

x​​​​​​2 = 1.7712, x​​​​​​3 = 1.5681

Please comment if you have any doubt.

​​​​​​

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Calculate two iterations of Newton's Method to approximate a zero of the function using the given...
Calculate two iterations of Newton's Method to approximate a zero of the function using the given initial guess. (Round your answers to four decimal places.) f(x) = cos x,    x1 = 0.8
Calculate two iterations of Newton's Method to approximate a zero of the function using the given...
Calculate two iterations of Newton's Method to approximate a zero of the function using the given initial guess. (Round your answers to three decimal places.) f(x) = x3 − 3, x1 = 1.6
Calculate two iterations of Newton's Method to approximate a zero of the function using the given...
Calculate two iterations of Newton's Method to approximate a zero of the function using the given initial guess. (Round your answers to three decimal places.) 45. f(x) = x5 − 5,    x1 = 1.4 n xn f(xn) f '(xn) f(xn) f '(xn) xn − f(xn) f '(xn) 1 2 40. Find two positive numbers satisfying the given requirements. The product is 234 and the sum is a minimum. smaller value= larger value= 30.Determine the open intervals on which the graph is...
3.8/3.9 5. Use Newton's Method to approximate the zero(s) of the function. Continue the iterations until...
3.8/3.9 5. Use Newton's Method to approximate the zero(s) of the function. Continue the iterations until two successive approximations differ by less than 0.001. Then find the zero(s) to three decimal places using a graphing utility and compare the results. f(x) = 3 − x + sin(x) Newton's Method: x= Graphing Utility: x= 6. Find the tangent line approximation T to the graph of f at the given point. Then complete the table. (Round your answer to four decimal places.)...
Use Newton's Method to approximate the zero(s) of the function. Continue the iterations until two successive...
Use Newton's Method to approximate the zero(s) of the function. Continue the iterations until two successive approximations differ by less than 0.001. Then find the zero(s) to three decimal places using a graphing utility and compare the results. f(x) = x^5 + x − 7 Newton's method: x= Graphing utility: x =
46. Use Newton's Method to approximate the zero(s) of the function. Continue the iterations until two...
46. Use Newton's Method to approximate the zero(s) of the function. Continue the iterations until two successive approximations differ by less than 0.001. Then find the zero(s) to three decimal places using a graphing utility and compare the results. f(x) = 2 − x3 Newton's method:      Graphing utility:      x = x =    48. Find the differential dy of the given function. (Use "dx" for dx.) y = x+1/3x-5 dy = 49.Find the differential dy of the given function. y...
Approximate the zero(s) of the function. Use Newton's Method and continue the process until two successive...
Approximate the zero(s) of the function. Use Newton's Method and continue the process until two successive approximations differ by less than 0.001. Then find the zero(s) to three decimal places using a graphing utility and compare the results. f(x) = x3 − cos x Newton's method:      Graphing utility:      x = x =
Apply Newton's Method to f and initial guess x0 to calculate x1, x2, and x3. (Round...
Apply Newton's Method to f and initial guess x0 to calculate x1, x2, and x3. (Round your answers to seven decimal places.) f(x) = 1 − 2x sin(x), x0 = 7
Complete four iterations of Newton’s Method for the function f(x)=x^3+2x+1 using initial guess x1= -.5
Complete four iterations of Newton’s Method for the function f(x)=x^3+2x+1 using initial guess x1= -.5
1)Calculate the left Riemann sum for the given function over the given interval, using the given...
1)Calculate the left Riemann sum for the given function over the given interval, using the given value of n. (When rounding, round your answer to four decimal places. If using the tabular method, values of the function in the table should be accurate to at least five decimal places.) HINT [See Example 2.] f(x) = 40 − 120x over [−1, 1], n = 4 2)Calculate the left Riemann sum for the given function over the given interval, using the given...