Question

Find the speed of the particle with position function r(t) = (t2 − 2t)⃗i − 2t⃗j...

Find the speed of the particle with position function

r(t) = (t2 − 2t)⃗i − 2t⃗j + (t2 − t)⃗k when t = 0.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find the velocity, acceleration, and speed of a particle with the given position function. (a) r(t)...
Find the velocity, acceleration, and speed of a particle with the given position function. (a) r(t) = e^t cos(t)i+e^t sin(t)j+ te^tk, t = 0 (b) r(t) = 〈t^5 ,sin(t)+ t ^ cos(t),cos(t)+ t^2 sin(t)〉, t = 1
Let r(t) = 1/2t ,4t^1/2 ,2t be a position function for some object. (a) (2 pts)...
Let r(t) = 1/2t ,4t^1/2 ,2t be a position function for some object. (a) (2 pts) Find the position of the object at t = 1. (b) (6 pts) Find the velocity of the object at t = 1. (c) (6 pts) Find the acceleration of the object at t = 1. (d) (6 pts) Find the speed of the object at t = 1. (e) (15 pts) Find the curvature K of the graph C determined by r(t) when...
A particle is moving with the given data. Find the position of the particle. a(t) =...
A particle is moving with the given data. Find the position of the particle. a(t) = t2 − 2t + 3,    s(0) = 0,    s(1) = 20
6. Given vector function r(t) = t2 − 2t, 1 + 3t, 1 3 t 3...
6. Given vector function r(t) = t2 − 2t, 1 + 3t, 1 3 t 3 + 1 2 t 2 i (a) Find r 0 (t) (b) Find the unit tangent vector to the space curve of r(t) at t = 3. (c) Find the vector equation of the tangent line to the curve at t = 3
Find T, N, and B for the given space curve. r(t) = (t2-9)i + (2t-9)j +...
Find T, N, and B for the given space curve. r(t) = (t2-9)i + (2t-9)j + 4k
The position of a particle for t > 0 is given by →r (t) = (3.0t...
The position of a particle for t > 0 is given by →r (t) = (3.0t 2 i ^ − 7.0t 3 j ^ − 5.0t −2 k ^ ) m. (a) What is the velocity as a function of time? (b) What is the acceleration as a function of time? (c) What is the particle’s velocity at t = 2.0 s? (d) What is its speed at t = 1.0 s and t = 3.0 s? (e) What is...
If the acceleration of a particle is given by a(t)=2t-1 and the velocity and position at...
If the acceleration of a particle is given by a(t)=2t-1 and the velocity and position at time t=0 are v(0)=0 and S(0)=2. 1. Find a formula for the velocity v(t) at time t. 2. Find a formula for the position S(t) at time t. 3. Find the total distance traveled by the particle on the interval [0,3].
A particle is moving with the given data. Find the position of the particle. a(t) =...
A particle is moving with the given data. Find the position of the particle. a(t) = 2t + 5, s(0) = 3, v(0) = −5 s(t) =
Find the antiderivative of r'(t)=cos(2t)i−2sintj+11+t2kr'(t)=cos(2t)i−2sintj+11+t2k that satisfies the initial condition r(0)=3i−2j+k.
Find the antiderivative of r'(t)=cos(2t)i−2sintj+11+t2kr'(t)=cos(2t)i−2sintj+11+t2k that satisfies the initial condition r(0)=3i−2j+k.
A particle is moving with the given data. Find the position of the particle. a(t) =...
A particle is moving with the given data. Find the position of the particle. a(t) = 2t + 7, s(0) = 3, v(0) = −5