Question

converges or diverges and for what reason? (n!)/9^(n+1)

converges or diverges and for what reason? (n!)/9^(n+1)

Homework Answers

Answer #1

Ratio test:-

If the series is defined as,

Then, the limit,

  1. If L<1, then the series is absolutely convergent and hence convergent.
  2. If L>1, then the series is divergent.
  3. If L=1, then the series may be conditionally convergent, absolutely convergent or divergent.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Determine whether the limit converges or diverges, if it converges, find the limit. an = (1+(4/n))^n
Determine whether the limit converges or diverges, if it converges, find the limit. an = (1+(4/n))^n
1) Determine if the sequence converges or Diverges. If it converges find the limit. an=n2*(e-n)
1) Determine if the sequence converges or Diverges. If it converges find the limit. an=n2*(e-n)
Determine whether the sequence converges or diverges. If it converges, find the limit. (If an answer...
Determine whether the sequence converges or diverges. If it converges, find the limit. (If an answer does not exist, enter DNE.) an = (4^n+1) / 9^n
Determine where series converges or diverges: ∑(-1)n(n!)2/(2n)!
Determine where series converges or diverges: ∑(-1)n(n!)2/(2n)!
Determine whether the following series converges or diverges:∞∑n=1 ln(1 +1/n).
Determine whether the following series converges or diverges:∞∑n=1 ln(1 +1/n).
Figure out if the series Σ∞ n=1 (((n + 1)^426) / n! ) converges or diverges....
Figure out if the series Σ∞ n=1 (((n + 1)^426) / n! ) converges or diverges. Explain answer completely.
Determine whether the sequence a_n = (3^n + 4^n)^(1/n) diverges or converges
Determine whether the sequence a_n = (3^n + 4^n)^(1/n) diverges or converges
Determine if the series converges conditionally, converges absolutely, or diverges. /sum(n=1 to infinity) ((-1)^n(2n^2))/(n^2+4) /sum(n=1 to...
Determine if the series converges conditionally, converges absolutely, or diverges. /sum(n=1 to infinity) ((-1)^n(2n^2))/(n^2+4) /sum(n=1 to infinity) sin(4n)/4^n
determine whether the sequence converges or diverges. a_n=(-1)^n n+7/n^2+2
determine whether the sequence converges or diverges. a_n=(-1)^n n+7/n^2+2
Given: Sigma (infinity) (n=1) sin((2n-1)pi/2)ne^-n Question: Determine if the series converges or diverges Additional: If converges,...
Given: Sigma (infinity) (n=1) sin((2n-1)pi/2)ne^-n Question: Determine if the series converges or diverges Additional: If converges, is it conditional or absolute?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT