Question

Let F ( x , y , z ) =< e^z sin( y ) + 3x...

Let F ( x , y , z ) =< e^z sin( y ) + 3x , e^x cos( z ) + 4y , cos( x y ) + 5z >, and let S1 be the sphere x^2 + y^2 + z^2 = 4 oriented outwards Find the flux integral ∬ S1 (F) * dS. You may with to use the Divergence Theorem.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Problem 10. Let F = <y, z − x, 0> and let S be the surface...
Problem 10. Let F = <y, z − x, 0> and let S be the surface z = 4 − x^2 − y^2 for z ≥ 0, oriented by outward-pointing normal vectors. a. Calculate curl(F). b. Calculate Z Z S curl(F) · dS directly, i.e., evaluate it as a surface integral. c. Calculate Z Z S curl(F) · dS using Stokes’ Theorem, i.e., evaluate instead the line integral I ∂S F · ds.
use stoke's theorem to find ∬ (curl F) * dS where F (x,y,z) = <y, 2x,...
use stoke's theorem to find ∬ (curl F) * dS where F (x,y,z) = <y, 2x, x+y+z> and and S is the upper half of the sphere x^2 + y^2 +z^2 =1, oriented outward
1.) Let f ( x , y , z ) = x ^3 + y +...
1.) Let f ( x , y , z ) = x ^3 + y + z + sin ⁡ ( x + z ) + e^( x − y). Determine the line integral of f ( x , y , z ) with respect to arc length over the line segment from (1, 0, 1) to (2, -1, 0) 2.) Letf ( x , y , z ) = x ^3 * y ^2 + y ^3 * z^...
Use the Divergence Theorem to evaluate F.N dS and find the outward flux of F through...
Use the Divergence Theorem to evaluate F.N dS and find the outward flux of F through the surface of the solid bounded by the graphs of the equations. F(x, y, z) = xi + xyj + zk Q: solid region bounded by the coordinate planes and the plane 3x + 4y + z = 24
Use Stokes' Theorem to evaluate S curl F · dS. F(x, y, z) = x2 sin(z)i...
Use Stokes' Theorem to evaluate S curl F · dS. F(x, y, z) = x2 sin(z)i + y2j + xyk, S is the part of the paraboloid z = 1 − x2 − y2 that lies above the xy-plane, oriented upward.
Use the Divergence Theorem to evaluate S F · N dS and find the outward flux...
Use the Divergence Theorem to evaluate S F · N dS and find the outward flux of F through the surface of the solid bounded by the graphs of the equations. F(x, y, z) = x2i + xyj + zk Q: solid region bounded by the coordinate planes and the plane 3x + 4y + 6z = 24
Let S be the portion of the surface z=cos(y) with 0≤x≤4 and -π≤y≤π. Find the flux...
Let S be the portion of the surface z=cos(y) with 0≤x≤4 and -π≤y≤π. Find the flux of F=<e^-y,2z,xy> through S: ∫∫F*n dS
(a) Is the vector field F = <e^(−x) cos y, e^(−x) sin y> conservative? (b) If...
(a) Is the vector field F = <e^(−x) cos y, e^(−x) sin y> conservative? (b) If so, find the associated potential function φ. (c) Evaluate Integral C F*dr, where C is the straight line path from (0, 0) to (2π, 2π). (d) Write the expression for the line integral as a single integral without using the fundamental theorem of calculus.
Use the Divergence Theorem to calculate the surface integral S F · dS; that is, calculate...
Use the Divergence Theorem to calculate the surface integral S F · dS; that is, calculate the flux of F across S. F(x, y, z) = ey tan(z)i + y 3 − x2 j + x sin(y)k, S is the surface of the solid that lies above the xy-plane and below the surface z = 2 − x4 − y4, −1 ≤ x ≤ 1, −1 ≤ y ≤ 1.
Let Q be the region bounded by the sphere x ^ 2 + y ^ 2...
Let Q be the region bounded by the sphere x ^ 2 + y ^ 2 + z ^ 2 = 25. Calculate the flow of the vector field F (x, y, z) = 2x ^ 2 i + 2y ^ 2 j + 2z ^ 2 k coming out of the sphere. (Use the Divergence or Gauss theorem). Evaluate the appropriate integral