Question

Suppose the radius, height and volume of a right circular cylinder are denoted as r, h,...

Suppose the radius, height and volume of a right circular cylinder are denoted as r, h, and V . The radius and height of this cylinder are increasing as a function of time. If dr/dt = 2 and dV/dt = 10π when r = 1, h = 2, what is the value of dh/dt at this time?

Homework Answers

Answer #1

we know that volume of a right circular cylinder with radius r and height h is given by,

differentiate both the side with respect to t we can write,

we have to find dh/dt when r = 1 and h = 2 given that dr/dt = 2 and dV/dt = 10pi hence.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The volume of a right circular cylinder is given by V= πr2h, where r is the...
The volume of a right circular cylinder is given by V= πr2h, where r is the radius of its circular base and h is its height. Differentiate the volume formula with respect to t to determine an equation relating the rates of change dV/dt , dr/dt , dh/dt.   At a certain instant, the height is 6 inches and increasing at 1 in/sec and the radius is 10 inches and decreasing at 1 in/sec. How fast is the volume changing at...
Let V be the volume of a cylinder having height h and radius r, and assume...
Let V be the volume of a cylinder having height h and radius r, and assume that h and r vary with time. (a) How are dV /dt, dh/dt, and dr/dt related? (b) At a certain instant, the height is 18 cm and increasing at 3 cm/s, while the radius is 30 cm and decreasing at 3 cm/s. How fast is the volume changing at that instant? Is the volume increasing or decreasing at that instant?
A circular cylinder with a radius R of 1 cm and a height H of 2...
A circular cylinder with a radius R of 1 cm and a height H of 2 cm carries a charge density of pv = h R^2 uC/cm^3 (h is a point on the z-axis). The cylinder is then placed on the xy plane with its axis the same as the z-axis. Find the electric field intensity E and and the electric potential V on point A on z-axis 2 cm from the top of the cylinder.
10. A circular cylinder with a radius R of 1 cm and a height H of...
10. A circular cylinder with a radius R of 1 cm and a height H of 2 cm carries a charge density of ρV = H r2 sin φ µC/cm3 (r is a point on the z-axis, φ is an azimuthal angle). The cylinder is then placed on the xy plane with its axis the same as the z-axis. Find the electric field intensity E and the electric potential V on point A on z-axis 2 cm from the top...
classical Mechanics problem: Find the ratio of the radius R to the height H of a...
classical Mechanics problem: Find the ratio of the radius R to the height H of a right-circular cylinder of fixed volume V that minimizes the surface area A.
A cylinder is inscribed in a right circular cone of height 2.5 and radius (at the...
A cylinder is inscribed in a right circular cone of height 2.5 and radius (at the base) equal to 6.5. What are the dimensions of such a cylinder which has maximum volume? Asking for both radius and height.
A potter forms a piece of clay into a right circular cylinder. As she rolls it,...
A potter forms a piece of clay into a right circular cylinder. As she rolls it, the height hh of the cylinder increases and the radius r decreases. Assume that no clay is lost in the process. Suppose the height of the cylinder is increasing by 0.4 centimeters per second. What is the rate at which the radius is changing when the radius is 4 centimeters and the height is 11 centimeters?
The volume of a cylinder can be computed as: v = π * r * r...
The volume of a cylinder can be computed as: v = π * r * r * h Write a C++ function that computes the volume of a cylinder given r and h. Assume that the calling function passes the values of r and h by value and v by reference, i.e. v is declared in calling function and is passed by reference. The function just updates the volume v declared in calling function. The function prototype is given by:...
The radius of a circular cylinder is increasing at rate of 3 cm/s while the height...
The radius of a circular cylinder is increasing at rate of 3 cm/s while the height is decreasing at a rate of 4 cm/s. a.) How fast is the surface area of the cylinder changing when the radius is 11 cm and the height is 7 cm? (use A =2 pi r2 +2 pi rh ) b.) Based on your work and answer from part (a),is the surface area increasing or decreasing at the same moment in time? How do...
(1 point) The tank in the form of a right-circular cone of radius 7 feet and...
(1 point) The tank in the form of a right-circular cone of radius 7 feet and height 34 feet standing on its end, vertex down, is leaking through a circular hole of radius 4 inches. Assume the friction coefficient to be c=0.6 and g=32ft/s^2. Then the equation governing the height hh of the leaking water is dh/dt= If the tank is initially full, it will take it  seconds to empty.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT