Question

T Answer the following questions about the function whose derivative is f′​(x)=2​x(x+5​). a. What are the...

T

Answer the following questions about the function whose derivative is

f′​(x)=2​x(x+5​).

a. What are the critical points of​ f?

b. On what open intervals is f increasing or​ decreasing?

c. At what​ points, if​ any, does f assume local maximum and minimum​ values?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Answer the following questions about the function whose derivative is f prime ​(x)equals3​x(xplus3 ​). a. What...
Answer the following questions about the function whose derivative is f prime ​(x)equals3​x(xplus3 ​). a. What are the critical points of​ f? b. On what open intervals is f increasing or​ decreasing? c. At what​ points, if​ any, does f assume local maximum and minimum​ values?
Answer the following questions about the function whose derivative is given below. a. What are the...
Answer the following questions about the function whose derivative is given below. a. What are the critical points of f? b. On what open intervals is f increasing or decreasing? c. At what points, if any, does f assume local maximum and minimum values? f′(x)= (5sinx−5)(2cosx+3) , 0 ≤ x ≤ 2π    
answer the following questions about the function whose derivative id f'(x)=(x^2(x-4))/(x+6) , x does not equal...
answer the following questions about the function whose derivative id f'(x)=(x^2(x-4))/(x+6) , x does not equal -6 a. what are the critical points of f b. on what open intervals is f increasing or decreasing c. at what points, if any, does f assume local maximum and minimum values
- Suppose f is a function such that f′(x) = (x+ 1)(x−2)2(x−3), so that f has...
- Suppose f is a function such that f′(x) = (x+ 1)(x−2)2(x−3), so that f has the critical points x=−1,2,3. Determine the open intervals on which f is increasing/decreasing. - Let f be the same function as in Problem 9. Determine which, if any, of the critical points is the location of a local extremum, and indicate whether each extremum is a maximum or minimum. Im confused on how to figure out if a function is increasing and decreasing and...
Consider the function f(x) = x^2/x-1 with f ' (x) = x^2-2x/ (x - 1)^2 and...
Consider the function f(x) = x^2/x-1 with f ' (x) = x^2-2x/ (x - 1)^2 and f '' (x) = 2 / (x - 1)^3 are given. Use these to answer the following questions. (a) [5 marks] Find all critical points and determine the intervals where f(x) is increasing and where it is decreasing, use the First Derivative Test to fifind local extreme value if any exists. (b) Determine the intervals where f(x) is concave upward and where it is...
consider the function f(x)=3x-5/sqrt x^2+1. given f'(x)=5x+3/(x^2+1)^3/2 and f''(x)=-10x^2-9x+5/(x^2+1)^5/2 a) find the local maximum and minimum...
consider the function f(x)=3x-5/sqrt x^2+1. given f'(x)=5x+3/(x^2+1)^3/2 and f''(x)=-10x^2-9x+5/(x^2+1)^5/2 a) find the local maximum and minimum values. Justify your answer using the first or second derivative test . round your answers to the nearest tenth as needed. b)find the intervals of concavity and any inflection points of f. Round to the nearest tenth as needed. c)graph f(x) and label each important part (domain, x- and y- intercepts, VA/HA, CN, Increasing/decreasing, local min/max values, intervals of concavity/ inflection points of f?
consider the function f(x) = x/1-x^2 (a) Find the open intervals on which f is increasing...
consider the function f(x) = x/1-x^2 (a) Find the open intervals on which f is increasing or decreasing. Determine any local minimum and maximum values of the function. Hint: f'(x) = x^2+1/(x^2-1)^2. (b) Find the open intervals on which the graph of f is concave upward or concave downward. Determine any inflection points. Hint f''(x) = -(2x(x^2+3))/(x^2-1)^3.
For the questions below, consider the following function. f (x) = 3x^4 - 8x^3 + 6x^2...
For the questions below, consider the following function. f (x) = 3x^4 - 8x^3 + 6x^2 (a) Find the critical point(s) of f. (b) Determine the intervals on which f is increasing or decreasing. (c) Determine the intervals on which f is concave up or concave down. (d) Determine whether each critical point is a local maximum, a local minimum, or neither.
1) Use the First Derivative Test to find the local maximum and minimum values of the...
1) Use the First Derivative Test to find the local maximum and minimum values of the function. (Enter your answers as a comma-separated list. If an answer does not exist, enter DNE.): g(u) = 0.3u3 + 1.8u2 + 146 a) local minimum values:    b) local maximum values:    2) Consider the following: f(x) = x4 − 32x2 + 6 (a) Find the intervals on which f is increasing or decreasing. (Enter your answers using interval notation.) increasing:    decreasing:...
5- For f ( x ) = − x 3 + 7 x 2 − 15...
5- For f ( x ) = − x 3 + 7 x 2 − 15 x a) Find the intervals on which f is increasing or decreasing. Find the local (or absolute) maximum and minimum values of f. b) Find the intervals of concavity and the inflection points.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT