Question

Find the differential of f(x,y)=sqrt(x2+y3) at the point (2,3). Then use the differential to estimate f(2.04,2.96).

Find the differential of f(x,y)=sqrt(x2+y3) at the point (2,3).

Then use the differential to estimate f(2.04,2.96).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
-find the differential and linear approximation of f(x,y) = sqrt(x^2+y^3) at the point (1,2) -use tge...
-find the differential and linear approximation of f(x,y) = sqrt(x^2+y^3) at the point (1,2) -use tge differential to estimate f(1.04,1.98)
f(x,y) = x2 y – 4 x y3 + ex+ y                  evaluate          f(x,...
f(x,y) = x2 y – 4 x y3 + ex+ y                  evaluate          f(x, x2) – f(1,1) Define a saddle point in mathematical terms.
1. Find the differential of f(x,y)=\sqrt{x + e^{4y}}f(x,y)= x+e^4y and use it to find the approximate...
1. Find the differential of f(x,y)=\sqrt{x + e^{4y}}f(x,y)= x+e^4y and use it to find the approximate change in the function f(x,y)f(x,y) as (x,y)(x,y) changes from (3,0)(3,0) to (2.6,0.1)(2.6,0.1).
F(x,y) = (x2+y3+xy, x3-y2) a) Find the linearization of F at the point (-1,-1) b) Explain...
F(x,y) = (x2+y3+xy, x3-y2) a) Find the linearization of F at the point (-1,-1) b) Explain that F has an inverse function G defined in an area of (1, −2) such that that G (1, −2) = (−1, −1), and write down the linearization to G in (1, −2)
If f(x,y)=(5∗x3+4∗y3+4∗x∗y+1) find the critical point for f(x,y) x=____ y=____ Is this critical point a local...
If f(x,y)=(5∗x3+4∗y3+4∗x∗y+1) find the critical point for f(x,y) x=____ y=____ Is this critical point a local maximum, local minimum, or saddle point?
Consider the function F(x, y, z) =x2/2− y3/3 + z6/6 − 1. (a) Find the gradient...
Consider the function F(x, y, z) =x2/2− y3/3 + z6/6 − 1. (a) Find the gradient vector ∇F. (b) Find a scalar equation and a vector parametric form for the tangent plane to the surface F(x, y, z) = 0 at the point (1, −1, 1). (c) Let x = s + t, y = st and z = et^2 . Use the multivariable chain rule to find ∂F/∂s . Write your answer in terms of s and t.
Show that the origin is a spiral point of the system x' = -y - x(sqrt(x2...
Show that the origin is a spiral point of the system x' = -y - x(sqrt(x2 + y2))    y' = x - y(sqrt(x2 + y2)) but a center for its linear approximation
Find the linear approximation of the function f(x, y, z) = sqrt x2 + y2 +...
Find the linear approximation of the function f(x, y, z) = sqrt x2 + y2 + z2 at (3, 6, 6) and use it to approximate the number sqrt3.01^2 + 5.97^2 + 5.98^2 . (Round your answer to five decimal places.) f(3.01, 5.97, 5.98)
Find the absolute maximum value of the function f(x,y)=x2-4xy+y3+4y on the triangular region with vertices (-1,-1),...
Find the absolute maximum value of the function f(x,y)=x2-4xy+y3+4y on the triangular region with vertices (-1,-1), (7,-1) and (7,7).
for the surface f(x/y/z)=x3+3x2y2+y3+4xy-z2=0 find any vector that is normal to the surface at the point...
for the surface f(x/y/z)=x3+3x2y2+y3+4xy-z2=0 find any vector that is normal to the surface at the point Q(1,1,3). use this to find the equation of the tangent plane to the surface at q.