Question

2.5.8 Let U be a vector space over a field F and T ∈ L(U). If...

2.5.8 Let U be a vector space over a field F and T ∈ L(U). If λ1, λ2 ∈ F are distinct eigenvalues and u1, u2 are the respectively associated eigenvectors of T , show that, for any nonzero a1, a2 ∈ F, the vector u = a1u1 + a2u2 cannot be an eigenvector of T .

Homework Answers

Answer #1

If λ2, λ2 ∈ F are distinct eigenvalues and u1, u2 are the respectively associated eigenvectors of T, then u1, u2 are linearly independent vectors.

Now, let us assume that u = a1u1 + a2u2 is an eigenvector of T corresponding to the eigenvalue ʎ. Then Tu = ʎu or, T(a1u1 + a2u2) = ʎ(a1u1 + a2u2) or, a1T(u1)+a2T(u) = ʎ(a1u1 + a2u2) or, a1ʎ1u1+    a2 ʎ2u2= ʎ(a1u1 + a2u2) or, a1u11- ʎ) = a2u2(ʎ -ʎ2).Further, since u1, u2 are linearly independent vectors, neither of these can be a scalar multiple of the other. This implies that either ʎ1- ʎ = 0 = ʎ -ʎ2 or, a1= a2 = 0.

Now, ʎ1- ʎ = 0 = ʎ -ʎ2   means that ʎ1 =ʎ = ʎ2 which is a contradiction as λ2, λ2 are distinct eigenvalues of T.

Also, a1, a2 are given to be non-zero.

This implies that we cannot have T(a1u1 + a2u2) = ʎ(a1u1 + a2u2) for any ʎ, i.e. a1u1 + a2u2 cannot be an  eigenvector of T.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a)Suppose U is a nonempty subset of the vector space V over field F. Prove that...
a)Suppose U is a nonempty subset of the vector space V over field F. Prove that U is a subspace if and only if cv + w ∈ U for any c ∈ F and any v, w ∈ U b)Give an example to show that the union of two subspaces of V is not necessarily a subspace.
Let V be a finite dimensional vector space and T ∈ L(V : V ), such...
Let V be a finite dimensional vector space and T ∈ L(V : V ), such that, T3 = 0. a) Show that the spectrum of T is σ(T) = {0}. b) Show that T cannot be diagonalized (unless we are in the trivial case T = O).
1. Let v1,…,vn be a basis of a vector space V. Show that (a) for any...
1. Let v1,…,vn be a basis of a vector space V. Show that (a) for any non-zero λ1,…,λn∈R, λ1v1,…,λnvn is also a basis of V. (b) Let ui=v1+⋯+vi, 1≤i≤n. Show that u1,…,un is a basis of V.
Let T:V→V be an endomorphism of a finite dimensional vector space over the field Z/pZ with...
Let T:V→V be an endomorphism of a finite dimensional vector space over the field Z/pZ with p elements, satisfying the equation Tp=T. Show that T is diagonalisable.
Let U and W be subspaces of a nite dimensional vector space V such that U...
Let U and W be subspaces of a nite dimensional vector space V such that U ∩ W = {~0}. Dene their sum U + W := {u + w | u ∈ U, w ∈ W}. (1) Prove that U + W is a subspace of V . (2) Let U = {u1, . . . , ur} and W = {w1, . . . , ws} be bases of U and W respectively. Prove that U ∪ W...
Suppose V is a vector space over F, dim V = n, let T be a...
Suppose V is a vector space over F, dim V = n, let T be a linear transformation on V. 1. If T has an irreducible characterisctic polynomial over F, prove that {0} and V are the only T-invariant subspaces of V. 2. If the characteristic polynomial of T = g(t) h(t) for some polynomials g(t) and h(t) of degree < n , prove that V has a T-invariant subspace W such that 0 < dim W < n
Let V be a finite-dimensional vector space and let T be a linear map in L(V,...
Let V be a finite-dimensional vector space and let T be a linear map in L(V, V ). Suppose that dim(range(T 2 )) = dim(range(T)). Prove that the range and null space of T have only the zero vector in common
Let V be a finite-dimensional vector space over C and T in L(V) be an invertible...
Let V be a finite-dimensional vector space over C and T in L(V) be an invertible operator in V. Suppose also that T=SR is the polar decomposition of T where S is the correspondIng isometry and R=(T*T)^1/2 is the unique positive square root of T*T. Prove that R is an invertible operator that committees with T, that is TR-RT.
Definition. Let S ⊂ V be a subset of a vector space. The span of S,...
Definition. Let S ⊂ V be a subset of a vector space. The span of S, span(S), is the set of all finite linear combinations of vectors in S. In set notation, span(S) = {v ∈ V : there exist v1, . . . , vk ∈ S and a1, . . . , ak ∈ F such that v = a1v1 + . . . + akvk} . Note that this generalizes the notion of the span of a...
Let F be the field of two elements and let V be a two dimensional vector...
Let F be the field of two elements and let V be a two dimensional vector space over F. How many vectors are there in V?How many one dimensional subspaces? How many different bases are there?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT