Question

Let F(x, y, z) = (yz, xz, xy) and the path c(t) = (cos3 t,sin3 t,...

Let F(x, y, z) = (yz, xz, xy) and the path c(t) = (cos3 t,sin3 t, 0) for 0 ≤ t ≤ 2π. Evaluate R c F · ds. Hint: Identify f such that ∇f = F.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider F and C below. F(x, y, z) = yz i + xz j + (xy...
Consider F and C below. F(x, y, z) = yz i + xz j + (xy + 18z) k C is the line segment from (1, 0, −3) to (4, 4, 1) (a) Find a function f such that F = ∇f. f(x, y, z) = (b) Use part (a) to evaluate C ∇f · dr along the given curve C.
Consider F and C below. F(x, y, z) = yz i + xz j + (xy...
Consider F and C below. F(x, y, z) = yz i + xz j + (xy + 12z) k C is the line segment from (2, 0, −3) to (4, 6, 3) (a) Find a function f such that F = ∇f. f(x, y, z) =       (b) Use part (a) to evaluate    C ∇f · dr along the given curve C.
1. a) For the surface f(x, y, z) = xy + yz + xz = 3,...
1. a) For the surface f(x, y, z) = xy + yz + xz = 3, find the equation of the tangent plane at (1, 1, 1). b) For the surface f(x, y, z) = xy + yz + xz = 3, find the equation of the normal line to the surface at (1, 1, 1).
Find the work done by the force field F(x,y,z) = yz i + xz j +...
Find the work done by the force field F(x,y,z) = yz i + xz j + xy k acting along the curve given by r(t) = t3 i + t2 j + tk from the point (1,1,1) to the point (8,4,2).
Evaluate using Stokes' theorem: a) ∬ ∇ × ? ∙ ???, if F = (xy, yz,...
Evaluate using Stokes' theorem: a) ∬ ∇ × ? ∙ ???, if F = (xy, yz, xz) in a cylinder z = 1-x two for 0≤ x ≤1, -2 ≤y ≤2
find the work done in the force camp F(x,y,z)=<xz,xy,zy> in a particle that moves along the...
find the work done in the force camp F(x,y,z)=<xz,xy,zy> in a particle that moves along the curve <t^2,-t^3,t^4> for 0 <= t <= 1 THE F is F(x,y,z)= <xz,yx,zy>
Let w = xy + yz + zx and x = rcosθ, y = rsinθ, z...
Let w = xy + yz + zx and x = rcosθ, y = rsinθ, z = rθ. Find ∂w/∂r and ∂w/∂θ when r = 1,θ = π/2.
Problem 10. Let F = <y, z − x, 0> and let S be the surface...
Problem 10. Let F = <y, z − x, 0> and let S be the surface z = 4 − x^2 − y^2 for z ≥ 0, oriented by outward-pointing normal vectors. a. Calculate curl(F). b. Calculate Z Z S curl(F) · dS directly, i.e., evaluate it as a surface integral. c. Calculate Z Z S curl(F) · dS using Stokes’ Theorem, i.e., evaluate instead the line integral I ∂S F · ds.
Evaluate the outward flux ∫∫S(F·n)dS of the vector fieldF=yz(x^2+y^2)i−xz(x^2+y^2)j+z^2(x^2+y^2)k, where S is the surface of the...
Evaluate the outward flux ∫∫S(F·n)dS of the vector fieldF=yz(x^2+y^2)i−xz(x^2+y^2)j+z^2(x^2+y^2)k, where S is the surface of the region bounded by the hyperboloid x^2+y^2−z^2= 1, and the planes z=−1 and z= 2.
Let F(x,y,z) = yzi + xzj + (xy+2z)k show that vector field F is conservative by...
Let F(x,y,z) = yzi + xzj + (xy+2z)k show that vector field F is conservative by finding a function f such that and use that to evaluate where C is any path from (1,0,-2) to (4,6,3)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT