Question

Expand (3x + 2y)5 using Pascal’s triangle. 244x5 + 810x4y + 1080x3y2+ 720x2y3+ 240xy4 + 32y5...

Expand (3x + 2y)5 using Pascal’s triangle.

244x5 + 810x4y + 1080x3y2+ 720x2y3+ 240xy4 + 32y5

243x5 + 810x4y + 810x3y2+ 720x2y3 + 243xy4 + 32y5

243x5 + 810x4y + 1080x3y2+ 720x2y3 + 240xy4 + 32y5

243x5 + 810x4y + 1810x3y2+ 720x2y3+ 242xy4+ 232y5

Homework Answers

Answer #1

Thankyou.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use python to write a function that will generate the ith row of pascal’s triangle (using...
Use python to write a function that will generate the ith row of pascal’s triangle (using recursion) The method signature should be pascal(row). It should return a list of elements that would be in that row of Pascal’s Triangle. For example the 0th row is [1] and the 2nd row is [1,2,1]
Solve using matrices. Show all work. 3x + 5y = -4 x + 2y = -2
Solve using matrices. Show all work. 3x + 5y = -4 x + 2y = -2
5. The planes: 2x − 3y + z = 1 and 3x − 2y − z...
5. The planes: 2x − 3y + z = 1 and 3x − 2y − z = 0 … (Explain/Show your Work) a. Are parallel b. Are Coincident c. Meet in a Line d. Meet at a Point
Solve the sytem using elimination. Do not use augmentive matrix. (a) 3x - 2y + z...
Solve the sytem using elimination. Do not use augmentive matrix. (a) 3x - 2y + z = 2 (b) 5x + y - 2z = 1 (c) 4x - 3y + 3z = 7
find y' for the function 1. (y-2)^7=3x^2+2x-2 2. 3y^3+2x^3=3 3.(4y^2+3)^4+3x^5-5=0 4. 4x^2+3x^2y^2-y^3=3x
find y' for the function 1. (y-2)^7=3x^2+2x-2 2. 3y^3+2x^3=3 3.(4y^2+3)^4+3x^5-5=0 4. 4x^2+3x^2y^2-y^3=3x
Solve using the elimination method. Show all work. 3x – 2y = 1 4y = 6x...
Solve using the elimination method. Show all work. 3x – 2y = 1 4y = 6x – 2 Solve using the elimination method. Show all work. x – 3y = -17 -x + 8y = 52
If ?ABC is an isosceles triangle where AB¯?AC¯, m?A=(2x?20)°, and m?B=(3x+5)°, then m?C=__________°.
If ?ABC is an isosceles triangle where AB¯?AC¯, m?A=(2x?20)°, and m?B=(3x+5)°, then m?C=__________°.
x^3y''' - x^2y'' - 3xy' =3x
x^3y''' - x^2y'' - 3xy' =3x
x^3y’’’+3x^2y”+2xy’=0
x^3y’’’+3x^2y”+2xy’=0
9x = 13y + 27 3x+2y=9
9x = 13y + 27 3x+2y=9