Question

A[ 2 -3 0]     [ 2 -5 0]       0 0 0 can I get...

A[ 2 -3 0]
    [ 2 -5 0]
      0 0 0

can I get a detailed explanation on how to determine the eigenvalues and corresponding eigen vectors for the 3×3 non triangular matrix Thanks .

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
5. Given A = | 0 2 5 1 0 3 1 0 0 |. (a)...
5. Given A = | 0 2 5 1 0 3 1 0 0 |. (a) Find the characteristic equation of A. (b) Compute eigenvalues of A. (c) Find an eigenvector corresponding to each of the eigenvalues found in part (b).
Find the characteristic equation and the eigenvalues (and corresponding eigenvectors) of the matrix. 0 −3 5...
Find the characteristic equation and the eigenvalues (and corresponding eigenvectors) of the matrix. 0 −3 5 −4 4 −10 0 0 4 (a) the characteristic equation (b) the eigenvalues (Enter your answers from smallest to largest.) (λ1, λ2, λ3) = the corresponding eigenvectors x1 = x2 = x3 =
Suppose A is a real 2x2 matrix with complex eigenvalues α ± i β , β...
Suppose A is a real 2x2 matrix with complex eigenvalues α ± i β , β ≠ 0. It was shown in class that the corresponding eigenvectors will be complex. Suppose that a + i b is an eigenvector for α + i β , for some real vectors a , b . Show that a − i b is an eigenvector corresponding to α − i β . Hint: properties of the complex conjugate may be useful. Please show...
Find the eigenvalues and the eigenvectors corresponding to them of the matrix -2 1 3 0...
Find the eigenvalues and the eigenvectors corresponding to them of the matrix -2 1 3 0 -2 6 0 0 4
Given: The following boundary value problem:    y"+ lamda*y = 0;                0 < x...
Given: The following boundary value problem:    y"+ lamda*y = 0;                0 < x < 2;         y(0) = 0;          y’(2) = 0 Find corresponding eigenvalues, (lamda)n and normalized eigenfunctions yn Expand the function f(x) = x, in terms of the eigen functions obtained in (i)
how and when can i know if the utility is a risk averse one or not?...
how and when can i know if the utility is a risk averse one or not? and if it's related to being concave or not, can i get an explanation of what's concave and how can i find it out from the utility ? a detailed explanation about this subject would be great! thanks
6. Let A =   3 −12 4 −1 0 −2 −1 5 −1 ...
6. Let A =   3 −12 4 −1 0 −2 −1 5 −1   . 1 (a) Find all eigenvalues of A5 (Note: If λ is an eigenvalue of A, then λ n is an eigenvalue of A n for any integer n.). (b) Determine whether A is invertible (Check if the constant term of the characteristic polynomial χA(λ) is non-zero.). (c) If A is invertible, find (i) A−1 using the Cayley-Hamilton theorem (ii) All the eigenvalues...
Matrix A is given as A = 0 2 −1 −1 3 −1 −2 4 −1...
Matrix A is given as A = 0 2 −1 −1 3 −1 −2 4 −1    a) Find all eigenvalues of A. b) Find a basis for each eigenspace of A. c) Determine whether A is diagonalizable. If it is, find an invertible matrix P and a diagonal matrix D such that D = P^−1AP. Please show all work and steps clearly please so I can follow your logic and learn to solve similar ones myself. I...
How can I think about matrix entries in a general sense? I a looking for a...
How can I think about matrix entries in a general sense? I a looking for a much deeper analysis than “systems of equations.” For instance, I know that when it is a rotation matrix, I know that the column vectors in the matrix, R, will be where the basis vectors land, and hence it will rotate any given vector accordingly. (is this correct in a general sense, as far as rotation matrices go?) However, for a general linear transformation, I...
2 1 1 1 0 1 1 1 0 These questions have got me confused: 1....
2 1 1 1 0 1 1 1 0 These questions have got me confused: 1. By calculation, I know this matrix has eigenvalue -1, 0, 3 and they are distinct eigenvalues. Can I directly say that this matrix is diagonalizable without calculating the eigenspace and eigenvectors? For all situations, If we get n number of answers from (aλ+b)n , can we directly ensure that the matrix is diagonalizable? 2. My professor uses CA(x)=det(λI-A) but the textbook shows CA(x)=det(λI-A). which...