Question

Write out the first five terms of the sequence with {[(n+8)/n+1)]^n}^inf n=1 and find its limit...

Write out the first five terms of the sequence with {[(n+8)/n+1)]^n}^inf n=1 and find its limit as well as mention if it converges?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find the point-wise limit and find out if the sequence converges uniformly on [0,1] to its...
Find the point-wise limit and find out if the sequence converges uniformly on [0,1] to its point-wise limit 1) (X^n)/(n) 2) (X^n)/(1-X^n)
1) Determine if the sequence converges or Diverges. If it converges find the limit. an=n2*(e-n)
1) Determine if the sequence converges or Diverges. If it converges find the limit. an=n2*(e-n)
1. Find the limit of the sequence whose terms are given by an= (n^2)(1-cos(5.6/n)) 2. for...
1. Find the limit of the sequence whose terms are given by an= (n^2)(1-cos(5.6/n)) 2. for the sequence an= 2(an-1 - 2) and a1=3 the first term is? the second term is? the third term is? the forth term is? the fifth term is?
Determine whether the following sequences converge or diverge. If a sequence converges, find its limit. If...
Determine whether the following sequences converge or diverge. If a sequence converges, find its limit. If a sequence diverges, explain why. (a) an = ((-1)nn)/ (n+sqrt(n)) (b) an = (sin(3n))/(1- sqrt(n))
In this task, you will write a proof to analyze the limit of a sequence. ASSUMPTIONS...
In this task, you will write a proof to analyze the limit of a sequence. ASSUMPTIONS Definition: A sequence {an} for n = 1 to ∞ converges to a real number A if and only if for each ε > 0 there is a positive integer N such that for all n ≥ N, |an – A| < ε . Let P be 6. and Let Q be 24. Define your sequence to be an = 4 + 1/(Pn +...
In this task, you will write a proof to analyze the limit of a sequence. ASSUMPTIONS...
In this task, you will write a proof to analyze the limit of a sequence. ASSUMPTIONS Definition: A sequence {an} for n = 1 to ∞ converges to a real number A if and only if for each ε > 0 there is a positive integer N such that for all n ≥ N, |an – A| < ε . Let P be 6. and Let Q be 24. Define your sequence to be an = 4 + 1/(Pn +...
Determine whether the sequence converges or diverges. If it converges, find the limit. (If an answer...
Determine whether the sequence converges or diverges. If it converges, find the limit. (If an answer does not exist, enter DNE.) an = (4^n+1) / 9^n
Prove that a sequence (un such that n>=1) absolutely converges if the limit as n approaches...
Prove that a sequence (un such that n>=1) absolutely converges if the limit as n approaches infinity of n2un=L>0
1. Can a sequence attain its limit; that is, can the limit of a sequence be...
1. Can a sequence attain its limit; that is, can the limit of a sequence be one of the terms of the sequence? If so, give an example. If not, explain. 2. If a sequence never attains its limit; could its terms consist of a finite number of distinct values? If so, give an example. If not, explain.
Let (a_n)∞n=1 be a sequence defined recursively by a1 = 1, a_n+1 = sqrt(3a_n) for n...
Let (a_n)∞n=1 be a sequence defined recursively by a1 = 1, a_n+1 = sqrt(3a_n) for n ≥ 1. we know that the sequence converges. Find its limit. Hint: You may make use of the property that lim n→∞ b_n = lim n→∞ b_n if a sequence (b_n)∞n=1 converges to a positive real number.