Question

Let the angles of a triangle be α, β, and γ, with opposite sides of length...

Let the angles of a triangle be α, β, and γ, with opposite sides of length a, b, and c, respectively. Use the Law of Cosines to find the remaining side and one of the other angles. (Round your answers to one decimal place.)

α = 46°;  b = 12;  c = 18

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Let the angles of a triangle be α, β, and γ, with opposite sides of...
1. Let the angles of a triangle be α, β, and γ, with opposite sides of length a, b, and c, respectively. Use the Law of Cosines and the Law of Sines to find the remaining parts of the triangle. (Round your answers to one decimal place.) α = 105°;  b = 3;  c = 10 a= β= ____ ° γ= ____ ° 2. Let the angles of a triangle be α, β, and γ, with opposite sides of length a, b,...
Let the angles of a triangle be α, β, and γ, with opposite sides of length...
Let the angles of a triangle be α, β, and γ, with opposite sides of length a, b, and c, respectively. Use the Law of Sines to find the remaining sides. (Round your answers to one decimal place.) β = 99°;  γ = 29°;  c = 20
Assume α is opposite side a, β is opposite side b, and γ is opposite side...
Assume α is opposite side a, β is opposite side b, and γ is opposite side c. Solve the triangle, if possible. Round your answers to the nearest tenth. (If not possible, enter IMPOSSIBLE.) α = 60°, β = 60°, γ = 60° a= b= c=
Assume   α   is   opposite   side   a,   β   is   opposite   side   b,   and   γ   is   opposite   side&n
Assume   α   is   opposite   side   a,   β   is   opposite   side   b,   and   γ   is   opposite   side   c.   Determine   whether   there   is   no   triangle,   one   triangle,   or   two   triangles.   Then   solve   each   triangle,   if   possible.   Round   each   answer   to   the   nearest   tenth   ?=20.5,?=35.0,?=25°
Use the Law of Cosines to find the remaining side and angles if possible. (Round your...
Use the Law of Cosines to find the remaining side and angles if possible. (Round your answers to two decimal places. If an answer does not exist, enter DNE.) a = 8, b = 12, γ = 67.7° c = α = ° β = °
If a, b, c are the sides of a triangle and A, B, C are the...
If a, b, c are the sides of a triangle and A, B, C are the opposite angles, find ∂A/∂a, ∂A/∂b, ∂A/∂c by implicit differentiation of the Law of Cosines.
8.4 Which of the following is not​ true? Choose the correct answer. A. We verify an...
8.4 Which of the following is not​ true? Choose the correct answer. A. We verify an identity by trying to transform one side of the identity into the exact trigonometric expression that appears on the opposite side. B. If one side of an identity includes a trigonometric expression involving the sum or difference of sine and cosine or the product of sines​ and/or cosines, then to verify the identity always start by transforming the other side of the identity. C....
Solve ΔABC. (Round your answer for b to one decimal place. Round your answers for α...
Solve ΔABC. (Round your answer for b to one decimal place. Round your answers for α and γ to the nearest 10 minutes. If there is no solution, enter NO SOLUTION.) β = 72°10',     c = 14.2,     a = 86.6 b = α = °  ' γ = °  '
Solve for the remaining side(s) and angle(s) if possible. (Round your answers to two decimal places....
Solve for the remaining side(s) and angle(s) if possible. (Round your answers to two decimal places. If not possible, enter IMPOSSIBLE.) α = 3°, a = 63, b = 100 smaller β     β = ° γ = ° c = larger β     β = ° γ = ° c =
Find the slope of each side of the triangle and use the slopes to find the...
Find the slope of each side of the triangle and use the slopes to find the measures of the interior angles. (Round angle measures to one decimal place.) A (-4,6) B- (3,4) C- (1,2) Find the Slope of AB, AC, BC and Degree of A,B,C