Let Q1, Q2, Q3 be constants so that (Q1, Q2) is the critical point of the function f(x, y) = xy − 5x − 5y + 25, and Q3 = 1 if f has a local minimum at (Q1, Q2), Q3 = 2 if f has a local maximum at (Q1, Q2), Q3 = 3 if f has a saddle point at (Q1, Q2), and Q3 = 4 otherwise. Let Q = ln(3 + |Q1| + 2|Q2| + 3|Q3|). Then T = 5 sin2 (100Q)
satisfies:— (A) 0 ≤ T < 1. — (B) 1 ≤ T < 2. — (C) 2 ≤ T < 3. — (D) 3 ≤ T < 4. — (E) 4 ≤ T ≤ 5
Pl have a look at note as also about sine function. Do come back if anything else was intended.
Appreciate feedback.
Get Answers For Free
Most questions answered within 1 hours.