Question

Find the length of the curve x = 3t^(2), y = 2t^(3) , 0 ≤ t...

Find the length of the curve x = 3t^(2), y = 2t^(3) , 0 ≤ t ≤ 1

Homework Answers

Answer #1

This is the exact length of curve!

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find the derivative of the parametric curve x=2t-3t2, y=cos(3t) for 0 ≤ ? ≤ 2?. Find...
Find the derivative of the parametric curve x=2t-3t2, y=cos(3t) for 0 ≤ ? ≤ 2?. Find the values for t where the tangent lines are horizontal on the parametric curve. For the horizontal tangent lines, you do not need to find the (x,y) pairs for these values of t. Find the values for t where the tangent lines are vertical on the parametric curve. For these values of t find the coordinates of the points on the parametric curve.
Find the curvature of the space curve x=(3t^2)-t^3 y=3t^2 z=(3t)+t^3
Find the curvature of the space curve x=(3t^2)-t^3 y=3t^2 z=(3t)+t^3
Determine the length of the curve r(t) = 4i + 2t^2 j + 1/3t^3 k from...
Determine the length of the curve r(t) = 4i + 2t^2 j + 1/3t^3 k from the point (4, 0, 0) to the point (4, 18, 9)
Eliminate the parameter to find a Cartesian equation of the curves: a) x=3t+2,y=2t−3 b) x=21​sin(t)−3,y=2cos(t)+5
Eliminate the parameter to find a Cartesian equation of the curves: a) x=3t+2,y=2t−3 b) x=21​sin(t)−3,y=2cos(t)+5
Consider the parametric curve defined by x = 3t − t^3 , y = 3t^2 ....
Consider the parametric curve defined by x = 3t − t^3 , y = 3t^2 . (a) Find dy/dx in terms of t. (b) Write the equations of the horizontal tangent lines to the curve (c) Write the equations of the vertical tangent lines to the curve. (d) Using the results in (a), (b) and (c), sketch the curve for −2 ≤ t ≤ 2.
Consider the parametric curve x = t2, y = t3 + 3t, −∞ < t <...
Consider the parametric curve x = t2, y = t3 + 3t, −∞ < t < ∞. (a) Find all of the points where the tangent line is vertical. (b) Find d2y/dx2 at the point (1, 4). (c) Set up an integral for the area under the curve from t = −2 to t = −1. (d) Set up an integral for the length of the curve from t=−1 to t=1.
Consider the lines in space whose parametric equations are as follows line #1 x=2+3t, y=3-t, z=2t...
Consider the lines in space whose parametric equations are as follows line #1 x=2+3t, y=3-t, z=2t line #2 x=6-4s, y=2+s, z=s-1 a Find the point where the lines intersect. b Compute the angle formed between the two lines. c Compute the equation for the plane that contains these two lines
Using MatLab 2. Given the parametric equations x = t^3 - 3t, y = t^2-3: (a)...
Using MatLab 2. Given the parametric equations x = t^3 - 3t, y = t^2-3: (a) Find the points where the tangent line is horizontal or vertical (indicate which in a text line) (b) Plot the curve parametrized by these equations to confirm. (c) Note that the curve crosses itself at the origin. Find the equation of both tangent lines. (d) Find the length of the loop in the graph and the area enclosed by the loop. 3. Use what...
Find the exact length of the curve y=(x^3)/3 + 1/(4x) for 2≤x≤3 Conslder the curve deflned...
Find the exact length of the curve y=(x^3)/3 + 1/(4x) for 2≤x≤3 Conslder the curve deflned by x=t+1 and y=t^2. Find the corresponding rectangular equation. Produce two graphs: one using the rectangular equation and one using the parametric equations. What are the differnce's between the graphs? Please show work.
Find the exact length of the curve. x = 9 + 12t2,    y = 2 + 8t3,    0...
Find the exact length of the curve. x = 9 + 12t2,    y = 2 + 8t3,    0 ≤ t ≤ 5
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT