Question

Let f(x) be a twice differentiable function (i.e. its first and second derivatives exist at all...

Let f(x) be a twice differentiable function (i.e. its first and second derivatives exist at all points). (a) What can you say about f(x) when f 0 (x) is positive? How about when f 0 (x) is negative? (b) What can you say about f 0 (x) when f 00(x) is positive? How about when f 00(x) is negative? (c) What can you say about f(x) when f 00(x) is positive? How about when f 00(x) is negative? (d) Let c be a number where f(c) is defined, f 0 (c) = 0, and f 00(c) is positive. What can you tell me about the point (c, f(c)) on the graph?

Homework Answers

Answer #1

If you have any problem understanding the solution please leave a comment.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose that  f   is a twice differentiable function and that its second partial derivatives are continuous....
Suppose that  f   is a twice differentiable function and that its second partial derivatives are continuous. Let  h(t) = f (x(t), y(t))  where  x = 2e^ t  and  y = 2t. Suppose that  fx(2, 0) = 1,  fy(2, 0) = 3,  fxx(2, 0) = 4,  fyy(2, 0) = 1,  and  fxy(2, 0) = 4. Find   d ^2h/ dt ^2  when t = 0.
Suppose that  f   is a twice differentiable function and that its second partial derivatives are continuous....
Suppose that  f   is a twice differentiable function and that its second partial derivatives are continuous. Let  h(t) = f (x(t), y(t))  where  x = 3e ^t  and  y = 2t. Suppose that  fx(3, 0) = 2,  fy(3, 0) = 1,  fxx(3, 0) = 3,  fyy(3, 0) = 2,  and  fxy(3, 0) = 1. Find   d 2h dt 2  when t = 0.
Let f(x) = x3 + 3x2 − 9x − 27 . The first and second derivatives...
Let f(x) = x3 + 3x2 − 9x − 27 . The first and second derivatives of f are given below. f(x) = x3 + 3x2− 9x − 27 = (x − 3)(x + 3)2 f '(x) = 3x2 + 6x − 9 = 3(x − 1)(x + 3) f ''(x) = 6x + 6 = 6(x + 1) a.) Find the x-intercepts on the graph of f. b.)Find the critical points of f. c.) Identify the possible inflection points...
Let f : E → R be a differentiable function where E = [a,b] or E...
Let f : E → R be a differentiable function where E = [a,b] or E = (−∞,∞), show that if f′(x) not = 0 for all x ∈ E then f is one-to-one, i.e., there does not exist distinct points x1,x2 ∈ E such that f(x1) = f(x2). Deduce that f(x) = 0 for at most one x.
Consider the piecewise defined function f(x) = xa− xb if 0<x<1. and f(x) = lnxc if...
Consider the piecewise defined function f(x) = xa− xb if 0<x<1. and f(x) = lnxc if x≥1. where a, b, c are positive numbers chosen in such a way that f(x) is differentiable for all 0<x<∞. What can be said about a, b,  and c?
Let f(x) be a continuous, everywhere differentiable function. What kind information does f'(x) provide regarding f(x)?...
Let f(x) be a continuous, everywhere differentiable function. What kind information does f'(x) provide regarding f(x)? Let f(x) be a continuous, everywhere differentiable function. What kind information does f''(x) provide regarding f(x)? Let f(x) be a continuous, everywhere differentiable function. What kind information does f''(x) provide regarding f'(x)? Let h(x) be a continuous function such that h(a) = m and h'(a) = 0. Is there enough evidence to conclude the point (a, m) must be a maximum or a minimum?...
Let f(x) be a function that is continuous for all real numbers and assume all the...
Let f(x) be a function that is continuous for all real numbers and assume all the intercepts of f, f' , and f” are given below. Use the information to a) summarize any and all asymptotes, critical numbers, local mins/maxs, PIPs, and inflection points, b) then graph y = f(x) labeling all the pertinent features from part a. f(0) = 1, f(2) = 0, f(4) = 1 f ' (2) = 0, f' (x) < 0 on (−∞, 2), and...
Let f: R -> R and g: R -> R be differentiable, with g(x) ≠ 0...
Let f: R -> R and g: R -> R be differentiable, with g(x) ≠ 0 for all x. Assume that g(x) f'(x) = f(x) g'(x) for all x. Show that there is a real number c such that f(x) = cg(x) for all x. (Hint: Look at f/g.) Let g: [0, ∞) -> R, with g(x) = x2 for all x ≥ 0. Let L be the line tangent to the graph of g that passes through the point...
Let z(s,t) z(s,t) be a differentiable function of two variable s and t with continuous first...
Let z(s,t) z(s,t) be a differentiable function of two variable s and t with continuous first partial derivatives. Assume further that s=s(x,y), t=t(x,y) are differentiable functions of variables x and y . (a) find the general chain rule chain rule for (∂z/∂x)y . Your subscripts will be marked. (b) Let equations F(x,y,s,t)=y+x^2+cos(t)−sin(s)+1=0, G(x,y,s,t)=x+y^2−st−2=0, implicitly define s , and t as functions of x and y . Compute ∂s/∂x)y ∂t/∂x)y at the point P(x,y,s,t)=(1,−1,π,0). (c) Let now z(s,t)=s^2+t. By using the...
1. Let f be the function defined by f(x) = x 2 on the positive real...
1. Let f be the function defined by f(x) = x 2 on the positive real numbers. Find the equation of the line tangent to the graph of f at the point (3, 9). 2. Graph the reflection of the graph of f and the line tangent to the graph of f at the point (3, 9) about the line y = x. I really need help on number 2!!!! It's urgent!
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT