Question

Write the second order differential equation as a system of two linear differential equations then solve...

Write the second order differential equation as a system of two linear differential equations then solve it.

x''-6x'+13x=0 x(0)= -1  x'(0)=1

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Solve the following differential equations y''-4y'+4y=(x+1)e2x (Use Wronskian) y''+(y')2+1=0 (non linear second order equation)
Solve the following differential equations y''-4y'+4y=(x+1)e2x (Use Wronskian) y''+(y')2+1=0 (non linear second order equation)
(10 marks) Solve the second-order linear differential equation y′′ − 2y′ − 3y = −32e−x using...
Solve the second-order linear differential equation y′′ − 2y′ − 3y = −32e−x using the method of variation of parameters.
Given the second-order differential equation y''(x) − xy'(x) + x^2 y(x) = 0 with initial conditions...
Given the second-order differential equation y''(x) − xy'(x) + x^2 y(x) = 0 with initial conditions y(0) = 0, y'(0) = 1. (a) Write this equation as a system of 2 first order differential equations. (b) Approximate its solution by using the forward Euler method.
Solve the first-order linear differential equation: y ′ + sin ⁡ ( x ) y =...
Solve the first-order linear differential equation: y ′ + sin ⁡ ( x ) y = sin ⁡ ( x ) , y ( 0 ) = 2.
Find the solution to the linear system of differential equations {x′ = 6x + 4y {y′=−2x...
Find the solution to the linear system of differential equations {x′ = 6x + 4y {y′=−2x satisfying the initial conditions x(0)=−5 and y(0)=−4. x(t) = _____ y(t) = _____
Write down a homogeneous second-order linear differential equation with constant coefficients whose solutions are: a. e^-xcos(x)...
Write down a homogeneous second-order linear differential equation with constant coefficients whose solutions are: a. e^-xcos(x) , e^-xsin(x) b. x , e^x
Solve the 1st-order linear differential equation using an integrating fac- tor. For problem solve the initial...
Solve the 1st-order linear differential equation using an integrating fac- tor. For problem solve the initial value problem. For each problem, specify the solution interval. dy/dx−2xy=x, y(0) = 1
Solve an engineering technology application of a separable differential equation. Use first order linear differential equations...
Solve an engineering technology application of a separable differential equation. Use first order linear differential equations for solving engineering technology problems. In 1986, the world's worst nuclear accident occurred in Chernobyl, Ukraine. Since then, over 20,000 people have died from radioactivity of Cesium 137, which has a half-life of 30.1 years. What percent of Cesium 137 released in 1986 remain in 2016?
Use the Laplace transform to solve the given system of differential equations. 2 dx/dt + dy/dt...
Use the Laplace transform to solve the given system of differential equations. 2 dx/dt + dy/dt − 2x = 1 dx/dt + dy/dt − 6x − 6y = 2 x(0) = 0, y(0) = 0
Consider the following second-order differential equation: ?"(?)−?′(?)−6?(?)=?(?) (1) Let ?(?)=−12e^t. Find the general solution to the...
Consider the following second-order differential equation: ?"(?)−?′(?)−6?(?)=?(?) (1) Let ?(?)=−12e^t. Find the general solution to the above equation. (2) Let ?(?)=−12. a) Convert the above second-order differential equation into a system of first-order differential equations. b) For your system of first-order differential equations in part a), find the characteristic equation, eigenvalues and their associated eigenvectors. c) Find the equilibrium for your system of first-order differential equations. Draw a phase diagram to illustrate the stability property of the equilibrium.