Question

Find a unit tangent vector to the curve r = 3 cos 3t i + 3...

Find a unit tangent vector to the curve r = 3 cos 3t i + 3 sin 2t j at t = π/6 .

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find the unit tangent vector T and the principle unit normal vector N of ⃗r(t) =...
Find the unit tangent vector T and the principle unit normal vector N of ⃗r(t) = cos t⃗i + sin t⃗j + ln(cos t)⃗k at t = π .
6. Given vector function r(t) = t2 − 2t, 1 + 3t, 1 3 t 3...
6. Given vector function r(t) = t2 − 2t, 1 + 3t, 1 3 t 3 + 1 2 t 2 i (a) Find r 0 (t) (b) Find the unit tangent vector to the space curve of r(t) at t = 3. (c) Find the vector equation of the tangent line to the curve at t = 3
Given r(t) = (et cos(t) )i + (et sin(t) )j + 2k. Find (i) unit tangent...
Given r(t) = (et cos(t) )i + (et sin(t) )j + 2k. Find (i) unit tangent vector T. (ii) principal unit normal vector N.
Find the unit tangent vector T(t) and the curvature κ(t) for the curve r(t) = <6t^3...
Find the unit tangent vector T(t) and the curvature κ(t) for the curve r(t) = <6t^3 , t, −3t^2 >.
20. Find the unit tangent vector T(t) and then use it to find a set of...
20. Find the unit tangent vector T(t) and then use it to find a set of parametric equations for the line tangent to the space curve given below at the given point. r(t)= -5t i+ 2t^2 j+3tk, t=5
Find the derivative r '(t) of the vector function r(t). <t cos 3t , t2, t...
Find the derivative r '(t) of the vector function r(t). <t cos 3t , t2, t sin 3t>
Given that the acceleration vector is a ( t ) = (−9 cos( 3t ) )...
Given that the acceleration vector is a ( t ) = (−9 cos( 3t ) ) i + ( −9 sin( 3t ) ) j + ( −5 t ) k, the initial velocity is v ( 0 ) = i + k, and the initial position vector is r ( 0 ) = i +j + k, compute: the velocity vector and position vector.
2)Find the slope of the tangent line to the curve r = sin (O) + cos...
2)Find the slope of the tangent line to the curve r = sin (O) + cos (O) at O = pi / 4 (O means theta) 3)Find the unit tangent vector at t = 0 for the curve r (t) = 4sen (t) i + 3tj + cos (t) k 4)A uniform cable measuring 40 feet is hung from the top of a building. The cable weighs 60 pounds. How much work in foot-pounds is required to climb 10 feet...
Given that the acceleration vector is a(t)=(-9 cos(3t))i+(-9 sin(3t))j+(-5t)k, the initial velocity is v(0)=i+k, and the...
Given that the acceleration vector is a(t)=(-9 cos(3t))i+(-9 sin(3t))j+(-5t)k, the initial velocity is v(0)=i+k, and the initial position vector is r(0)=i+j+k, compute: A. The velocity vector v(t) B. The position vector r(t)
6) please show steps and explanation. a)Suppose r(t) = < cos(3t), sin(3t),4t >. Find the equation...
6) please show steps and explanation. a)Suppose r(t) = < cos(3t), sin(3t),4t >. Find the equation of the tangent line to r(t) at the point (-1, 0, 4pi). b) Find a vector orthogonal to the plane through the points P (1, 1, 1), Q(2, 0, 3), and R(1, 1, 2) and the area of the triangle PQR.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT