Question

A pulsar is a rapidly rotating neutron star that emits a radio beam the way a...

A pulsar is a rapidly rotating neutron star that emits a radio beam the way a lighthouse emits a light beam. We receive a radio pulse for each rotation of the star. The period T of rotation is found by measuring the time between pulses. Suppose a pulsar has a period of rotation of T = 0.0833 s that is increasing at the rate of 1.89 x 10-6 s/y. (a) What is the pulsar's angular acceleration α? (b) If α is constant, how many years from now will the pulsar stop rotating? (c) Suppose the pulsar originated in a supernova explosion seen 690 years ago. Assuming constant α, find the initial T.

Homework Answers

Answer #1

upvote if u like the explanation

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A pulsar is a rapidly rotating neutron star that emits radio pulses with precise synchronization, there...
A pulsar is a rapidly rotating neutron star that emits radio pulses with precise synchronization, there being one such pulse for each rotation of the star. The period T of rotation is found by measuring the time between pulses. At present, the pulsar in the central region of the Crab nebula has a period of rotation of T = 0.16000000 s, and this is observed to be increasing at the rate of 0.00000943 s/y. What is the angular velocity of...
46.. The Crab Pulsar is a neutron star, rotating with a period of about 33.085 ms....
46.. The Crab Pulsar is a neutron star, rotating with a period of about 33.085 ms. It is estimated to have an equatorial radius of 15 km, about average for a neutron star. The pulsar is slowing in its rotation so that it is expected to come to rest 9.5 × 1010 s in the future. Assuming it is slowing with a constant angular acceleration, what is the tangential acceleration of an object on the neutron star’s equator? 4.8 ×...
Astronomers detect stars that are rotating extremely rapidly, known as neutron stars. A neutron star is...
Astronomers detect stars that are rotating extremely rapidly, known as neutron stars. A neutron star is believed to form from the inner core of a larder star that collapsed, under its own gravitation, to a star of very small radius and very high density. Before collapse, suppose the ore of such a star is the size of our Sun (R = 7105km)with mass 2.0 times as great as the Sun, and is rotating at a frequency of 1.0 revolution every...