Question

How do you find the area of the surface x2+y2-z=0 between z=1 and z=3 ?

How do you find the area of the surface x2+y2-z=0 between z=1 and z=3 ?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find the area of the surface. The part of the sphere x2 + y2 + z2...
Find the area of the surface. The part of the sphere x2 + y2 + z2 = 64 that lies above the plane z = 3.
Find the surface area of upper part of the sphere of radius a, x2 + y2...
Find the surface area of upper part of the sphere of radius a, x2 + y2 + z2 = a2, cut by the cone z = sqrt(x2 + y2). Show the integral that corresponds to the surface area using spherical coordinates.
Find the surface area of the part of the sphere x2 + y2 + z2  = ...
Find the surface area of the part of the sphere x2 + y2 + z2  =  49 that lies above the plane z  =  4.
a) Find the volume of the region bounded by Z = (X2 + Y2)2 and Z...
a) Find the volume of the region bounded by Z = (X2 + Y2)2 and Z = 8 (Show all steps) b) Find the surface area of the portion of the surface z = X2 + Y2 which is inside the cylinder X2 + Y2 = 2 c) Find the surface area of the portion of the graph Z = 6X + 8Y which is above the triangle in the XY plane with vertices (0,0,0), (2,0,0), (0,4,0)
Find the volume of the area bounded by the surface z = 4 - x2 on...
Find the volume of the area bounded by the surface z = 4 - x2 on the upper side, the cylinder x2+ y2 = 4 and the xy plane on the underside.
Find the area of the surface. The portion of the sphere x2 + y2 + z2...
Find the area of the surface. The portion of the sphere x2 + y2 + z2 = 400 inside the cylinder x2 + y2 = 256 *its not 320pi or 1280pi
Find the surface area of the cone x2 + y2 = z2 that lies inside the...
Find the surface area of the cone x2 + y2 = z2 that lies inside the sphere x2 + y2 + z2 = 6z by taking integrals.
Calculate ∬Se^(−z)dS where S is the surface given by x2+y2=4, 0≤z≤7.
Calculate ∬Se^(−z)dS where S is the surface given by x2+y2=4, 0≤z≤7.
Compute the surface integral over the given oriented surface: F=〈0,9,x2〉F=〈0,9,x2〉 ,  hemisphere x2+y2+z2=4x2+y2+z2=4, z≥0z≥0 ,  outward-pointing normal
Compute the surface integral over the given oriented surface: F=〈0,9,x2〉F=〈0,9,x2〉 ,  hemisphere x2+y2+z2=4x2+y2+z2=4, z≥0z≥0 ,  outward-pointing normal
Find the area of the following part of the surface z = x + y2 that...
Find the area of the following part of the surface z = x + y2 that lies above the triangle with vertices (0,0), (1,1), and (0,1).