Question

Consider the function g(x) = |3x + 4|. (a) Is the function differentiable at x =...

Consider the function g(x) = |3x + 4|.

(a) Is the function differentiable at x = 10? Find out using ARCs. If it is not differentiable there, you do not have to do anything else. If it is differentiable, write down the equation of the tangent line thru (10, g(10)).

(b) Graph the function. Can you spot a point “a” such that the tangent line through (a, f(a)) does not exist? If yes, show using ARCS that g(x) is not differentiable there.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1). Consider the following function and point. f(x) = x3 + x + 3;    (−2, −7) (a)...
1). Consider the following function and point. f(x) = x3 + x + 3;    (−2, −7) (a) Find an equation of the tangent line to the graph of the function at the given point. y = 2) Consider the following function and point. See Example 10. f(x) = (5x + 1)2;    (0, 1) (a) Find an equation of the tangent line to the graph of the function at the given point. y =
Given the function g(x) = x^4 – 5x, find the slope of the curve at the...
Given the function g(x) = x^4 – 5x, find the slope of the curve at the point (1,-4). Also, find an equation for the line tangent to the graph at this point.
Let f: R -> R and g: R -> R be differentiable, with g(x) ≠ 0...
Let f: R -> R and g: R -> R be differentiable, with g(x) ≠ 0 for all x. Assume that g(x) f'(x) = f(x) g'(x) for all x. Show that there is a real number c such that f(x) = cg(x) for all x. (Hint: Look at f/g.) Let g: [0, ∞) -> R, with g(x) = x2 for all x ≥ 0. Let L be the line tangent to the graph of g that passes through the point...
g (u, v) is a differentiable function and g (1,2) = 100, gu (1,2) = 3,...
g (u, v) is a differentiable function and g (1,2) = 100, gu (1,2) = 3, gv (1,2) = 7 are given. The function f is defined as f (x, y, z) = g (xyz, x ^ 2, y^2z). Find the equation of the tangent plane at the point (1,1,1) of the f (x, y, z) = 100 surface.
f(x)= 3x ^ 2 -4 Find the equation of the tangent line to this function at...
f(x)= 3x ^ 2 -4 Find the equation of the tangent line to this function at x = 3.
Consider the function f(x,y)=y+sin(x/y) a) Find the equation of the tangent plane to the graph offat...
Consider the function f(x,y)=y+sin(x/y) a) Find the equation of the tangent plane to the graph offat the point(1,3) b) Find the linearization of the function f at the point(1;3)and use it to approximate f(0:9;3:1). c) Explain why f is differentiable at the point(1;3) d)Find the differential of f e) If (x,y) changes from (1,3) to (0.9,3.1), compare the values of ‘change in f’ and df
1)Consider the function f(x)f(x) whose second derivative is f″(x)=9x+8sin(x). If f(0)=4 and f′(0)=2, what is f(5)?...
1)Consider the function f(x)f(x) whose second derivative is f″(x)=9x+8sin(x). If f(0)=4 and f′(0)=2, what is f(5)? 2) Consider the function f(x)=(7/x^3)−(2/x^5). Let F(x) be the antiderivative of f(x) with F(1)=0.   3)Given that the graph of f(x) passes through the point (5,4) and that the slope of its tangent line at (x,f(x)) is 3x+3, what is  f(2)? Then F(2) equals
4. Consider the function z = f(x, y) = x^(2) + 4y^(2) (a) Describe the contour...
4. Consider the function z = f(x, y) = x^(2) + 4y^(2) (a) Describe the contour corresponding to z = 1. (b) Write down the equation of the curve obtained as the intersection of the graph of z and the plane x = 1. (c) Write down the equation of the curve obtained as the intersection of the graph of z and the plane y = 1. (d) Write down the point of intersection of the curves in (b) and...
Consider the function f (x) = x/(2x+1)*2 . (i) Find the domain of this function. (Start...
Consider the function f (x) = x/(2x+1)*2 . (i) Find the domain of this function. (Start by figuring out any forbidden values!) (ii) Use (i) to write the equation of the vertical asymptote for this function. (iii) Find the limits as x goes to positive and negative infinity, (iv) Find the derivative of this function. (v) Find the coordinates at point A(..,…), where the x-coordinate is 1. Use exact fractions, never a decimal estimate. (vi) Find the equation of the...
Consider the function f(x) = 4 + x cos x. Write an equation for : a)...
Consider the function f(x) = 4 + x cos x. Write an equation for : a) A function g(x) such that the graph of g(x) is the graph of f(x), shifted 3 units to the right and scaled with factor 1 vertically. b) A function h(x) such that the graph of h(x) is the graph of f(x), compressed by a factor 3 horizontally and reflected about the y-axis.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT