Question

Consider the differential equation: 66t^2y''+12t(t-11)y'-12(t-11)y=5t^3, . You can verify that y1 = 5t and y2 =...

Consider the differential equation: 66t^2y''+12t(t-11)y'-12(t-11)y=5t^3, . You can verify that y1 = 5t and y2 = 4te^(-2t/11)satisfy the corresponding homogeneous equation.

The Wronskian W between y1 and y2 is W(t) = (-40/11)t^2e^((-2t)/11)

Apply variation of parameters to find a particular solution.

yp = ?????

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Given y1(t)=t^2 and y2(t)=t^-1 satisfy the corresponding homogeneous equation of t^2y''−2y=2−t3,  t>0 Then the general solution to...
Given y1(t)=t^2 and y2(t)=t^-1 satisfy the corresponding homogeneous equation of t^2y''−2y=2−t3,  t>0 Then the general solution to the non-homogeneous equation can be written as y(t)=c1y1(t)+c2y2(t)+yp(t) yp(t) =
In this problem verify that the given functions y1 and y2 satisfy the corresponding homogeneous equation....
In this problem verify that the given functions y1 and y2 satisfy the corresponding homogeneous equation. Then find a particular solution of the nonhomogeneous equation. x^2y′′−3xy′+4y=31x^2lnx, x>0, y1(x)=x^2, y2(x)=x^2lnx. Enter an exact answer.
Let y1 and y2 be two solutions of the equation y'' + a(t)y' + b(t)y =...
Let y1 and y2 be two solutions of the equation y'' + a(t)y' + b(t)y = 0 and let W(t) = W(y1, y2)(t) be the Wronskian. Determine an expression for the derivative of the Wronskian with respect to t as a function of the Wronskian itself.
Using variation of parameters, find a particular solution of the given differential equations: a.) 2y" +...
Using variation of parameters, find a particular solution of the given differential equations: a.) 2y" + 3y' - 2y = 25e-2t (answer should be: y(t) = 2e-2t (2e5/2 t - 5t - 2) b.) y" - 2y' + 2y = 6 (answer should be: y = 3 + (-3cos(t) + 3sin(t))et )
Consider the differential equation L[y] = y′′ + p(t)y′ + q(t)y = f(t) + g(t), and...
Consider the differential equation L[y] = y′′ + p(t)y′ + q(t)y = f(t) + g(t), and suppose L[yf] = f(t) and L[yg] = g(t). Explain why yp = yf + yg is a solution to L[y] = f + g. Suppose y and y ̃ are both solutions to L[y] = f + g, and suppose {y1, y2} is a fundamental set of solutions to the homogeneous equation L[y] = 0. Explain why y = C1y1 + C2y2 + yf...
Given that y1 = t, y2 = t 2 are solutions to the homogeneous version of...
Given that y1 = t, y2 = t 2 are solutions to the homogeneous version of the nonhomogeneous DE below, verify that they form a fundamental set of solutions. Then, use variation of parameters to find the general solution y(t). (t^2)y'' - 2ty' + 2y = 4t^2 t > 0
Use variation of parameters to find a general solution to the differential equation given that the...
Use variation of parameters to find a general solution to the differential equation given that the functions y1 and y2 are linearly independent solutions to the corresponding homogeneous equation for t>0. y1=et y2=t+1 ty''-(t+1)y'+y=2t2
a) Find the general solution of the differential equation y''-2y'+y=0 b) Use the method of variation...
a) Find the general solution of the differential equation y''-2y'+y=0 b) Use the method of variation of parameters to find the general solution of the differential equation y''-2y'+y=2e^t/t^3
it can be shown that y1=x^(−2), y2=x^(−5) and  y3=2 are solutions to the differential equation x^2D^3y+10xD^2y+18Dy=0 on...
it can be shown that y1=x^(−2), y2=x^(−5) and  y3=2 are solutions to the differential equation x^2D^3y+10xD^2y+18Dy=0 on (0,∞) What does the Wronskian of y1,y2,y3 equal? W(y1,y2,y3) = Is {y1,y2,y3} a fundamental set for x^2D^3y+10xD^2y+18Dy=0 on (0,∞) ?
The function y1(t) = t is a solution to the equation. t2 y'' + 2ty' -...
The function y1(t) = t is a solution to the equation. t2 y'' + 2ty' - 2y = 0, t > 0 Find another particular solution y2 so that y1 and y2 form a fundamental set of solutions. This means that, after finding a solution y2, you also need to verify that {y1, y2} is really a fundamental set of solutions.