Question

If, in a monopoly market, the demand for a product is p = 120 − 0.80x...

If, in a monopoly market, the demand for a product is p = 120 − 0.80x and the revenue function is R = px, where x is the number of units sold, what price will maximize revenue? (Round your answer to the nearest cent.)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
If, in a monopoly market, the demand function for a product is p = 145 −...
If, in a monopoly market, the demand function for a product is p = 145 − 0.80x and the revenue function is R = px, where x is the number of units sold and p is the price per unit, what price will maximize revenue?
The monthly demand function for x units of a product sold by a monopoly is p...
The monthly demand function for x units of a product sold by a monopoly is p = 6,100 − 1/2x2  and its average cost is C = 3,030 + 2x dollars. Production is limited to 100 units. a) Find the profit function, P(x), in dollars. b) Find the number of units that maximizes profits. (Round your answer to the nearest whole number.) c) Find the maximum profit. (Round your answer to the nearest cent.)
The monthly demand function for a product sold by a monopoly is p = 2200 −...
The monthly demand function for a product sold by a monopoly is p = 2200 − (1/3)x^2 dollars, and the average cost is C = 1000 + 10x + x^2 dollars. Production is limited to 1000 units and x is in hundreds of units. (a) Find the quantity (in hundreds of units) that will give maximum profit. (b) Find the maximum profit. (Round your answer to the nearest cent.)
1. In this problem, p and C are in dollars and x is the number of...
1. In this problem, p and C are in dollars and x is the number of units. A monopoly has a total cost function C = 1000 + 216x + 0x2 for its product, which has demand function p = 648 ? 3x ? 2x2. Find the consumer's surplus at the point where the monopoly has maximum profit. (Round your answer to the nearest cent.) 2. In this problem, p is in dollars and x is the number of units....
3. As the number of units sold increases, market price decreases (supply and demand).             Suppose...
3. As the number of units sold increases, market price decreases (supply and demand).             Suppose that p = 5000 – 0.75x , where p is the market price and x is the number of      units sold. Suppose further that the cost of producing x items is given by      C(x) = 3000 + 15x, and that the revenue from the sale of x units is given by      R(x) = 120x.     a. Express the cost as a...
The consumer demand equation for tissues is given by q = (96 − p)2, where p...
The consumer demand equation for tissues is given by q = (96 − p)2, where p is the price per case of tissues and q is the demand in weekly sales. (a) Determine the price elasticity of demand E when the price is set at $31. (Round your answer to three decimal places.) E = Interpret your answer. The demand is going by % per 1% increase in price at that price level. (b) At what price should tissues be...
The demand for cat food is given by D(x)=110e^−0.02x where x is the number of units...
The demand for cat food is given by D(x)=110e^−0.02x where x is the number of units sold and D(x) is the price in dollars. Find the revenue function. R(x)= Find the number of units sold that will maximize the revenue. Select an answer units or dollars   Find the price that will yield the maximum revenue. Select an answer units or dollars  
The demand function for a particular brand of LCD TV is given by p = 2400...
The demand function for a particular brand of LCD TV is given by p = 2400 − 30x where p is the price per unit in dollars when x television sets are sold. (a) Find the revenue function. R(x) =      (b) Determine the number of sets that must be sold in order to maximize the revenue. sets (c) What is the maximum revenue? $   (d) What is the price per unit when the revenue is maximized? $  per unit
The short term demand for a product can be approximated by q = D(p) = 18...
The short term demand for a product can be approximated by q = D(p) = 18 − 2 √p where p represents the price of the product, in dollars per unit, and q is the number of units demanded. Determine the elasticity function. Use the elasticity of demand to determine if the current price of $50 should be raised or lowered to maximize total revenue.
Let Q(p) be the demand function for a certain product, where p is price. If R...
Let Q(p) be the demand function for a certain product, where p is price. If R is a function of p for the total revenue, (dR)/(dp) MR= Your answer should be In terms of Q and E