Question

Find the distance travelled by the particle during the first 4 seconds when a particle moves...

Find the distance travelled by the particle during the first 4 seconds when a particle moves in a straight line with a velocity at time t given by t-2.

I need the answer ASAP

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A particle moves along a coordinate line so that its velocity at time t is ?(?)...
A particle moves along a coordinate line so that its velocity at time t is ?(?) = ?2 − 2? m/s. Find the total distance travelled by the particle during the first 4 seconds.
A particle moves according to a law of motion , , where is measured in seconds...
A particle moves according to a law of motion , , where is measured in seconds and in feet. Find the velocity at time . What is the velocity after second? When is the particle at rest? When is the particle moving in the positive direction? Find the total distance traveled during the first seconds. Draw a diagram like Figure 2 to illustrate the motion of the particle. Find the acceleration at time and after second. Graph Icon Graph the...
A particle moves along a line with velocity v(t)=(3 - t)(2+t), find the distance traveled during...
A particle moves along a line with velocity v(t)=(3 - t)(2+t), find the distance traveled during the time interval [0, 1].
A particle that moves along a straight line has velocity v ( t ) = t^2e^−...
A particle that moves along a straight line has velocity v ( t ) = t^2e^− 2t meters per second after t seconds. How many meters will it travel during the first t seconds (from time=0 to time=t)?
A particle moves in a straight line with the given velocity ?(?)=9cos(?) (in m/s). Find the...
A particle moves in a straight line with the given velocity ?(?)=9cos(?) (in m/s). Find the displacement and distance traveled over the time interval [0,9?]. Calculate the displacement and distance.
A particle moves according to a law of motion s = f(t), t ≥ 0, where...
A particle moves according to a law of motion s = f(t), t ≥ 0, where t is measured in seconds and s in feet. f(t) = t3 − 9t2 + 15t (a) Find the velocity at time t. v(t) =      (b) What is the velocity after 4 s? v(4) =  ft/s (c) When is the particle at rest? t =  s (smaller value) t =  s (larger value) (d) When is the particle moving in the positive direction? (Enter your answer...
A particle moves according to a law of motion s = f(t), t ≥ 0, where...
A particle moves according to a law of motion s = f(t), t ≥ 0, where t is measured in seconds and s in feet. (If an answer does not exist, enter DNE.) f(t) = t3 − 8t2 + 23t (a) Find the velocity at time t. v(t) =    ft/s (b) What is the velocity after 1 second? v(1) =   ft/s (c) When is the particle at rest? (d) When is the particle moving in the positive direction? (Enter your...
A particle moves according to a law of motion s = f(t), t ≥ 0, where...
A particle moves according to a law of motion s = f(t), t ≥ 0, where t is measured in seconds and s in feet. f(t) = 0.02t4 − 0.08t3 (a) Find the velocity at time t. (b) What is the velocity after 3 s? (c) When is the particle at rest? (Enter your answers as a comma-separated list.) (d) When is the particle moving in a positive direction? (Enter your answer using interval notation.) (e) Find the total distance...
A particle that moves along a straight line has velocity v(t)=4t^(2)e^(-t) meters per second after t...
A particle that moves along a straight line has velocity v(t)=4t^(2)e^(-t) meters per second after t seconds. How far will it travel during the first t seconds?
A particle of mass 10kg moves in a straight line such that the force (in Newtons)...
A particle of mass 10kg moves in a straight line such that the force (in Newtons) acting on it at time (in seconds) is given by 90t4+70t3+30, If at time t=0 its velocity,v (in ms-1), is given by v(0)=9 , and its position x (in m) is given by x(0)=6 , what is the position of the particle at time ?