Question

Let f(x,y) = xe^sin(x^2y+xy^2) /(x^2 + x^2y^2 + y^4)^3 . Compute ∂f ∂x (√2,0) pointwise.

Let f(x,y) = xe^sin(x^2y+xy^2) /(x^2 + x^2y^2 + y^4)^3 . Compute ∂f ∂x (√2,0) pointwise.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
let f(x,y) = xe^(xy) Find the directional derivative of f at point (2,0) in the direction...
let f(x,y) = xe^(xy) Find the directional derivative of f at point (2,0) in the direction of vector <-6,8>. Find the maximum rate of change of f at point (2,0) and the direction in which it occurs.
Let  f (x, y) = xe xy. Find the maximum rate of change of  f  at...
Let  f (x, y) = xe xy. Find the maximum rate of change of  f  at the point (3, -2).
Let f (x, y) = 100 sin(π(x−2y))/(1+x^2+y^2) . Find the directional derivative of f 1+x^2+y^2 at...
Let f (x, y) = 100 sin(π(x−2y))/(1+x^2+y^2) . Find the directional derivative of f 1+x^2+y^2 at the point (10, 6) in the direction of: (a) u = 3 i − 2 j (b) v = −i + 4 j
Let F be the defined by the function F(x, y) = 3 + xy - x...
Let F be the defined by the function F(x, y) = 3 + xy - x - 2y, with (x, y) in the segment L of vertices A (5,0) and B (1,4). Find the absolute maximums and minimums.
Let f(x, y) = x tan(xy^2) + ln(2y). Find the equation of the tangent plane at...
Let f(x, y) = x tan(xy^2) + ln(2y). Find the equation of the tangent plane at (π, 1⁄2).
Find fxx, fxy, fyy when f(x, y) = xe^(x^2−xy+y^2)
Find fxx, fxy, fyy when f(x, y) = xe^(x^2−xy+y^2)
Let F (x, y) = 2xyi + (x – 2y)j, r (t) = sin ti –...
Let F (x, y) = 2xyi + (x – 2y)j, r (t) = sin ti – 2 cos t j, 0 ≤ t ≤ π. Then C F•dr is
Let (1,1) be the initial approximation of a solution of (x + y) sin(xy) = 1...
Let (1,1) be the initial approximation of a solution of (x + y) sin(xy) = 1 (x - y) cos(x^2y) = 1: Use the Newton's method to find, and report, the next two approximations of the solution.
Let f(x, y) = sqrt( x^2 − y − 4) ln(xy). • Plot the domain of...
Let f(x, y) = sqrt( x^2 − y − 4) ln(xy). • Plot the domain of f(x, y) on the xy-plane. • Find the equation for the tangent plane to the surface at the point (4, 1/4 , 0). Give full explanation of your work
1. for 0<= x <=3 0<=x<=1 f(x,y) = k(x^2y+ xy^2) a. Find K joint probablity density...
1. for 0<= x <=3 0<=x<=1 f(x,y) = k(x^2y+ xy^2) a. Find K joint probablity density function. b. Find marginal distribution respect to x c. Find the marginal distribution respect to y d. compute E(x) and E(y) e. compute E(xy) f. Find the covariance and interpret the result.