Question

Use any test to show that the following series is convergent. X∞ n=1 (−1)n (n2+ 1/...

Use any test to show that the following series is convergent. X∞ n=1 (−1)n (n2+ 1/ 5n + 1)

(b) Find the minimum number of terms of the series that we need so that the estimated sum has an |error| < 0.001.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
(a) Use any test to show that the following series is convergent. X∞ n=1 (−1)n n...
(a) Use any test to show that the following series is convergent. X∞ n=1 (−1)n n 2 + 1 5 n + 1 (b) Find the minimum number of terms of the series that we need so that the estimated sum has an |error| < 0.001.
Consider the series: ∞∑n=21n[ln (n)]4 a) Use the integral test to show that the above series...
Consider the series: ∞∑n=21n[ln (n)]4 a) Use the integral test to show that the above series is convergent b) How many terms do we need to add to approximate the sum with in Error<0.0004.
Use the RATIO test to determine whether the series is convergent or divergent. a) sigma from...
Use the RATIO test to determine whether the series is convergent or divergent. a) sigma from n=1 to infinity of (1/n!) b) sigma from n=1 to infinity of (2n)!/(3n) Use the ROOT test to determine whether the series converges or diverges. a) sigma from n=1 to infinity of    (tan-1(n))-n b) sigma from n=1 to infinity of ((-2n)/(n+1))5n For each series, use and state any appropriate tests to decide if it converges or diverges. Be sure to verify all necessary...
6. Let series {an} = 1/(n2 + 1) and series {bn} = 1/n2. Use Limit Comparison...
6. Let series {an} = 1/(n2 + 1) and series {bn} = 1/n2. Use Limit Comparison Test to determine if each series is convergent or divergent. 7. Use Ratio Test to determine if series {an}= (n + 2)/(2n + 7) where n is in interval [0, ∞] is convergent or divergent. Note: if the test is inconclusive, use n-th Term Test to answer the question. 8. Use Root Test to determine if series {an} = nn/3(1 + 2n) where n...
Test the series for convergence or divergence. ∞ en n2 n = 1 convergent or divergent    
Test the series for convergence or divergence. ∞ en n2 n = 1 convergent or divergent    
1. Determine whether the series is convergent or divergent. a) If it is convergent, find its...
1. Determine whether the series is convergent or divergent. a) If it is convergent, find its sum. (using only one of the THREE: telescoping, geometric series, test for divergence) summation from n=0 to infinity of [2^(n-1)+(-1)^n]/[3^(n-1)] b) Using ONLY the Integral Test. summation from n=1 to infinity of n/(e^(n/3)) Please give detailed answer.
Identify the following series as convergent or divergent. State which test you are using, and show...
Identify the following series as convergent or divergent. State which test you are using, and show your work. E (9^n)/((-2)^(n+1))n
Consider the following series. ∞ 1 n4 n = 1 (a) Use the sum of the...
Consider the following series. ∞ 1 n4 n = 1 (a) Use the sum of the first 10 terms to estimate the sum of the given series. (Round the answer to six decimal places.) s10 = 0.082036 Incorrect: Your answer is incorrect. (b) Improve this estimate using the following inequalities with n = 10. (Round your answers to six decimal places.) sn + ∞ f(x) dx n + 1 ≤ s ≤ sn + ∞ f(x) dx n ≤ s...
Find the Sum of a Convergent Series: a.) ∑∞?=0 (-4/9)n b.) ∑∞?=0 1/(n+1)(n+4)
Find the Sum of a Convergent Series: a.) ∑∞?=0 (-4/9)n b.) ∑∞?=0 1/(n+1)(n+4)
Determine whether each series is absolutely convergent, conditionally convergent, or divergent. X∞ n=1 (−1)n−1 (n /n...
Determine whether each series is absolutely convergent, conditionally convergent, or divergent. X∞ n=1 (−1)n−1 (n /n 3/2 + 1)