Select 3 vectors that are linear independent than adjust the base to be orthogonal
<1,1,0> <0,0,1> <-1,2,0> <-1,2,1>
show ALL POSSIBLE work evein betweennbatween
Let v1 = (1,1,0), v2 = (0,0,1), v3= (-1,2,0) and v4= (-1,2,1). Apparently, since v4 = v2+v3, and since none of v1,v2,v3 can be a scalar multiple or a linear combination of the other 2 vectors, hence { v1,v2,v3 } is a linearly independent set.
Now, let u1=v1=(1,1,0), u2=v2-proju1(v2)= v2-[(v2.u1)/(u1.u1)]u1 = v2-[(0+0+0)/(1+1+0)u1 = v2= (0,0,1), and u3 = v3-proju1(v3)-proju2(v3)=v3-[(v3.u1)/(u1.u1)]u1-[(v3.u2)/(u2.u2)]u2=v3-[(-1+2+0)/(1+1+0)]u1-[(0+0+0)/(0+0+1]u2= (-1,2,0) –(1/2)(1,1,0)= (-3/2,3/2,0).Then {u1,u2,u3 }={(1,1,0),(0,0,1), (-3/2,3/2,0)}is an orthogonal set.
Get Answers For Free
Most questions answered within 1 hours.