Question

suppose and are functions that are differentiable at x=0 and that f(1)=2, f'(1)=-1, g(1)=-2, and g'(1)=3....

suppose and are functions that are differentiable at x=0 and that f(1)=2, f'(1)=-1, g(1)=-2, and g'(1)=3. Find the value of h'(1).

1) h(x)=f(x) g(x)

2) h(x)=xf(x) / x+g(x)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose that f is a differentiable function and define g(x)=e^(2*f(x)+5x). Suppose that f(-2) = 1 and...
Suppose that f is a differentiable function and define g(x)=e^(2*f(x)+5x). Suppose that f(-2) = 1 and f ' (-2) = 2. Find g ' (-2).
Consider the functions f(x) and g(x), for which f(0)=2, g(0)=4, f′(0)=12 and g′(0)= -2 find h'(0)...
Consider the functions f(x) and g(x), for which f(0)=2, g(0)=4, f′(0)=12 and g′(0)= -2 find h'(0) for the function h(x) = f(x)/g(x)
Suppose f(1) = −1, f(2) = 0, g(1) = 2, g(2) = 7, and f 0...
Suppose f(1) = −1, f(2) = 0, g(1) = 2, g(2) = 7, and f 0 (1) = 1, f0 (2) = 4, g0 (1) = 8, g0 (2) = −4. (a) Suppose h(x) = f(x^2 g(x)). Find h 0 (1). (b) Suppose j(x) = f(x) sin(x − 1). Find j 0 (1). (c) Suppose m(x) = ln(x)+arctan(x) e x+g(2x) . Find m0 (1).
The table below shows values for four differentiable functions. Suppose we know the following things: h'(x)...
The table below shows values for four differentiable functions. Suppose we know the following things: h'(x) = g(x) g'(x) = f(x) f'(x) = b(x) b'(x) = h(x) 0 1 2 3 4 b(x) 2 4 3 1 0 f(x) 1 4 2 3 0 h(x) 2 0 3 1 4 g(x) 2 0 4 3 1 a) What is intergal from a = 2 and b = 4  f(x) dx? b) What is intergal from a = 0 and b =...
If f is a differentiable function such that f′(x) = (x^2− 16)*g(x), where g(x)>0 for all...
If f is a differentiable function such that f′(x) = (x^2− 16)*g(x), where g(x)>0 for all x, at which value(s) of x does f have a local maximum? 1. At both x=-4,4 2. Only at x=-16 3. Only at x=4 4. At both x=-16,16 5. Only at x=-4 6. Only at x=16
(1 point) Assume that ? and ? are differentiable functions of ?. Suppose 4?^2=?^3−?^7. Find ??/??...
(1 point) Assume that ? and ? are differentiable functions of ?. Suppose 4?^2=?^3−?^7. Find ??/?? when ?=1/9, ??/??=6, and ?>0. ??/??=
Suppose that f and g are infinitely differentiable functions defined on R. Suppose that Pf is...
Suppose that f and g are infinitely differentiable functions defined on R. Suppose that Pf is the second order Taylor polynomial for f centered at 0 and that Pg is the second order Taylor polynomial for g centered at 0. Let Pfg be the second order Taylor polynomial for fg centered at 0. Is Pfg = PfPg? If not, is there a relationship between Pfg and PfPg ?
Let h(x) = f (g(x) − (x^2 + 1)) . If f(0) = 3, f(2) =...
Let h(x) = f (g(x) − (x^2 + 1)) . If f(0) = 3, f(2) = 5, f ' (0) = −5, f ' (2) = 11, g(1) = 2, and g ' (1) = 4. What is h(1) and h ' (1)?
Suppose f is a differentiable function of x and y, and g(u, v) = f(eu +...
Suppose f is a differentiable function of x and y, and g(u, v) = f(eu + sin(v), eu + cos(v)). Use the table of values to calculate gu(0, 0) and gv(0, 0).      f     g     fx     fy     (0, 0)   0 5 1 4   (1, 2)   5 0 6 3 gu(0, 0) = gv(0, 0) =
Suppose that f(2) = −3, g(2) = 4, f '(2) = −1, and g'(2) = 5....
Suppose that f(2) = −3, g(2) = 4, f '(2) = −1, and g'(2) = 5. Find h'(2). (a) h(x) = 3f(x) − 5g(x) h'(2) h(x) = f(x)g(x) h'(2) = h(x) = f(x) g(x) h'(2) =(d) h(x) = g(x) 1 + f(x) h'(2) =