Question

Suppose you have a function of the general form e(x) = ax^3 + bx^2 + cx...

Suppose you have a function of the general form e(x) = ax^3 + bx^2 + cx + d

a, b, c, and d are real numbers.

Find values for the coefficients if

-there is a local maximum at (6,6)

-there is a local minimum at (10,2)

-there is an inflection point at (8,4)

Please show how you solve and explain.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose that f(x)=ax^3+bx^2+cx+d cubic polynomial.. Show that f(x) and k(x)=f(x-2) have the same number of roots.(without...
Suppose that f(x)=ax^3+bx^2+cx+d cubic polynomial.. Show that f(x) and k(x)=f(x-2) have the same number of roots.(without quadratic formula)
The function f(x) = x^3+ax^2+bx+7 has a relative extrema at x = 1 and x =...
The function f(x) = x^3+ax^2+bx+7 has a relative extrema at x = 1 and x = -3. a.) What are the values of a and b? b.) Use the second derivative test to classify each extremum as a relative maximum or a relative minimum. c.) Determine the relative extrema.
1) find a cubic polynomial with only one root f(x)=ax^3+bx^2+cx +d such that it had a...
1) find a cubic polynomial with only one root f(x)=ax^3+bx^2+cx +d such that it had a two cycle using Newton’s method where N(0)=2 and N(2)=0 2) the function G(x)=x^2+k for k>0 must ha e a two cycle for Newton’s method (why)? Find the two cycle
Consider the function y=[(x-7)x]^2 1. At what value(s) of x is it possible that we have...
Consider the function y=[(x-7)x]^2 1. At what value(s) of x is it possible that we have a local maximum or minimum, or an inflection point? 2. Use the general test to determine whether we have a maximum, minimum, or inflection point, for each of the critical values you found in part (1).
. For the quartic function f(x) = ax4 + bx2 + cx + d, find the...
. For the quartic function f(x) = ax4 + bx2 + cx + d, find the values of a, b, c, d such that there is a local maximum at (0, -6) and a local minimum at (1, -8). How do you find this?
Let f(x) be a cubic polynomial of the form x^3 +ax^2 +bx+c with real coefficients. 1....
Let f(x) be a cubic polynomial of the form x^3 +ax^2 +bx+c with real coefficients. 1. Deduce that either f(x) factors in R[x] as the product of three degree-one polynomials, or f(x) factors in R[x] as the product of a degree-one polynomial and an irreducible degree-two polynomial. 2.Deduce that either f(x) has three real roots (counting multiplicities) or f(x) has one real root and two non-real (complex) roots that are complex conjugates of each other.
Which functions fit the description? function 1: f(x)=x^2 + 12. function 2: f(x)= −e^x^2 - 1....
Which functions fit the description? function 1: f(x)=x^2 + 12. function 2: f(x)= −e^x^2 - 1. function 3: f(x)= e^3x function 4: f(x)=x^5 -2x^3 -1 a. this function defined over all realnumbers has 3 inflection points b. this function has no global minimum on the interval (0,1) c. this function defined over all real numbers has a global min but no global max d. this function defined over all real numbers is non-decreasing everywhere e. this function (defined over all...
Given a function?(?)= −?5 +5?−10, −2 ≤ ? ≤ 2 (a) Find critical numbers (b) Find...
Given a function?(?)= −?5 +5?−10, −2 ≤ ? ≤ 2 (a) Find critical numbers (b) Find the increasing interval and decreasing interval of f (c) Find the local minimum and local maximum values of f (d) Find the global minimum and global maximum values of f (e) Find the inflection points (f) Find the interval on which f is concave up and concave down (g) Sketch for function based on the information from part (a)-(f)
1. (Continued) Consider the function (e) (f) f (x) = x3 − 7 x + 5....
1. (Continued) Consider the function (e) (f) f (x) = x3 − 7 x + 5. 2 (0.5 pt) Find the possible inflection points of f(x). Show work. (0.5 pt) Test the possible inflection points of f(x) to determine if each point is or is not an inflection point. Your work must show that you tested each point properly and support your conclusion. Be sure to state your conclusion. Show work. (g) (1 pt) Find the global minimum and global...
Suppose you choose a real number X from the interval [3,16] with the density function f(x)=Cx,...
Suppose you choose a real number X from the interval [3,16] with the density function f(x)=Cx, where C is a constant. a) Find C. Remember that if you integrate a density function over the entire sample space interval, you should get 1. b) Find P(E), where E=[a,b] is a subinterval of [3,16] (as a function of a and b ). c) Find P(X>4) d) Find P(X<14) e) Find P(X^2−18X+56≥0) Note: You can earn partial credit on this problem.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT