Question

A fuel tank full of oil is buried 10 feet below the surface. It is shaped...

A fuel tank full of oil is buried 10 feet below the surface. It is shaped like a cylinder with a diameter of 10 feet and a height of 12 feet. If the density of oil is 50 lbs/ft3,

determine the amount of work needed to pump all the oil to the surface.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a circular cone shaped tank that is 10 feet high, is filled to about 2 feet...
a circular cone shaped tank that is 10 feet high, is filled to about 2 feet in height with lb/ft^3 density olive oil. How much work is required to pump the oil to the edge of the tank
A tank shaped like a cone pointing downward has height 9 feet and base radius 3...
A tank shaped like a cone pointing downward has height 9 feet and base radius 3 feet, and is full of water. The weight density of water is 62.4 lb/ft^3. Find the work required to pump all of the water out over the top of the tank.
an inverted right circular gasoline tank of radius 2 ft and height 8ft is buried in...
an inverted right circular gasoline tank of radius 2 ft and height 8ft is buried in the ground so that the circular top is 1 f below the ground (parallel to the ground). Howw much work (in ft-lbs) is required to pump the gasoline occupying the top foot of the tank to aheight 2ft above the ground if the tank id full. (ignore the water the ends in the hose from the pumping process aftertop foot is done being pumped...
A tank of water is 15 feet long and has a cross section in the shape...
A tank of water is 15 feet long and has a cross section in the shape of an equilateral triangle with sides 2 feet long (point of the triangle points directly down). The tank is filled with water to a depth of 9 inches. Determine the amount of work needed to pump all of the water to the top of the tank. Assume that the density of water is 62 lb/ft3.
Suppose we have a rectangular tank buried upright so that the top is 7ft underground. The...
Suppose we have a rectangular tank buried upright so that the top is 7ft underground. The tank is 11ft deep, 3ft wide, and 5ft long. It is filled to the 3 foot mark with gasoline, which has a density of 46.75lbs/ft3. Set up an integral which represents the work required to pump all of the gasoline into a container that sits 2ft above the surface.
Calculate the work (in joules) required to pump all of the water out of a full...
Calculate the work (in joules) required to pump all of the water out of a full tank. The density of water is 1000 kilograms per cubic meter. Assume the tank (a) is shaped like an inverted cone of radius 5 meters and height 10 meters where the spout is connected to a 2 meter tube extending vertically above the tank. (b) is shaped like a horizontal cylinder of radius R and height H where the spout is connected directly to...
Calculate the work (in joules) required to pump all of the water out of a full...
Calculate the work (in joules) required to pump all of the water out of a full tank. The density of water is 1000 kilograms per cubic meter. Assume the tank (b) is shaped like a horizontal cylinder of radius R and height H where the spout is connected directly to the top of the tank.
A tank, shaped like a cone has height 99 meter and base radius 11 meter. It...
A tank, shaped like a cone has height 99 meter and base radius 11 meter. It is placed so that the circular part is upward. It is full of water, and we have to pump it all out by a pipe that is always leveled at the surface of the water. Assume that a cubic meter of water weighs 10000N, i.e. the density of water is 10000Nm^3. How much work does it require to pump all water out of the...
A tank in the shape of an inverted cone 12 feet tall and 2 feet in...
A tank in the shape of an inverted cone 12 feet tall and 2 feet in radius is full of water. Calculate the work W required to pump all the water to a height of 1 foot above the tank.
A conical tank of diameter 6 m and height 10 m is filled with water. Compute...
A conical tank of diameter 6 m and height 10 m is filled with water. Compute for the work needed to pump all the water 2 m above the tank. The water has a density of 1000 kg per cubic meter.