Question

Let F (x, y) = 2xyi + (x – 2y)j, r (t) = sin ti –...

Let F (x, y) = 2xyi + (x – 2y)j, r (t) = sin ti – 2 cos t j, 0 ≤ tπ. Then C Fdr is

Homework Answers

Answer #1

If you have any doubt then please comment.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1.) Let f ( x , y , z ) = x ^3 + y +...
1.) Let f ( x , y , z ) = x ^3 + y + z + sin ⁡ ( x + z ) + e^( x − y). Determine the line integral of f ( x , y , z ) with respect to arc length over the line segment from (1, 0, 1) to (2, -1, 0) 2.) Letf ( x , y , z ) = x ^3 * y ^2 + y ^3 * z^...
Let f (x, y) = 100 sin(π(x−2y))/(1+x^2+y^2) . Find the directional derivative of f 1+x^2+y^2 at...
Let f (x, y) = 100 sin(π(x−2y))/(1+x^2+y^2) . Find the directional derivative of f 1+x^2+y^2 at the point (10, 6) in the direction of: (a) u = 3 i − 2 j (b) v = −i + 4 j
Let C be a closed curve parametrized by r(t) = sin ti+cos tj with 0 ≤...
Let C be a closed curve parametrized by r(t) = sin ti+cos tj with 0 ≤ t ≤ 2π. Let F = yi − xj be a vector field. (a) Evaluate the line integral xyds. C (b) Find the circulation of F over C. (c) Find the flux of F over C.
Let F ( x , y ) = 〈 e^x + y^2 − 3 , −...
Let F ( x , y ) = 〈 e^x + y^2 − 3 , − e ^(− y) + 2 x y + 4 y 〉. a) Determine if F ( x , y ) is a conservative vector field and, if so, find a potential function for it. b) Calculate ∫ C F ⋅ d r where C is the curve parameterized by r ( t ) = 〈 2 t , 4 t + sin ⁡ π...
Evaluate the following. f(x, y) = x + y S: r(u, v) = 5 cos(u) i...
Evaluate the following. f(x, y) = x + y S: r(u, v) = 5 cos(u) i + 5 sin(u) j + v k, 0 ≤ u ≤ π/2, 0 ≤ v ≤ 3
Let F(x, y, z)  =  (3x2 ln(6y2 + 2) + 8z3) i  +  (  12yx3 6y2...
Let F(x, y, z)  =  (3x2 ln(6y2 + 2) + 8z3) i  +  (  12yx3 6y2 + 2 + 7z) j  +  (24xz2 + 7y − 10π sin πz) k and let  r(t)  =  (t3 + 1) i  +  (t2 + 2) j  +  t3 k ,  0  ≤  t  ≤  1. Evaluate   C ∫ C F · dr .
y''(t) + 3y'(t) + 2y(t) = 0 if t < π 10 , sin(t) if t...
y''(t) + 3y'(t) + 2y(t) = 0 if t < π 10 , sin(t) if t ≥ π , subject to y(0) = 5, y'(0) = 2
Evaluate C (y + 6 sin(x)) dx + (z2 + 2 cos(y)) dy + x3 dz...
Evaluate C (y + 6 sin(x)) dx + (z2 + 2 cos(y)) dy + x3 dz where C is the curve r(t) = sin(t), cos(t), sin(2t) , 0 ≤ t ≤ 2π. (Hint: Observe that C lies on the surface z = 2xy.) C F · dr =
Let f(x,y) = xe^sin(x^2y+xy^2) /(x^2 + x^2y^2 + y^4)^3 . Compute ∂f ∂x (√2,0) pointwise.
Let f(x,y) = xe^sin(x^2y+xy^2) /(x^2 + x^2y^2 + y^4)^3 . Compute ∂f ∂x (√2,0) pointwise.
4.Given F(x,y,z)=(cos(y))i+(sin(y))j+k, find divF and curlF at P0(π/4,π,0) divF(P0)=? curlF(P0)= ?
4.Given F(x,y,z)=(cos(y))i+(sin(y))j+k, find divF and curlF at P0(π/4,π,0) divF(P0)=? curlF(P0)= ?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT