Question

evaluate the double integral x^2 y da, r is 9x^2+4y^2=36, use x=2u and y=3r

evaluate the double integral x^2 y da, r is 9x^2+4y^2=36, use x=2u and y=3r

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use the given transformation to evaluate the double integral. (12x + 12y) dA R , where...
Use the given transformation to evaluate the double integral. (12x + 12y) dA R , where R is the parallelogram with vertices (−3, 6), (3, −6), (4, −5), and (−2, 7) ; x = 1/ 3 *(u + v), y = 1 /3* (v − 2u)
2. Evaluate the double integral Z Z R e ^(x^ 2+y ^2) dA where R is...
2. Evaluate the double integral Z Z R e ^(x^ 2+y ^2) dA where R is the semicircular region bounded by x ≥ 0 and x^2 + y^2 ≤ 4. 3. Find the volume of the region that is bounded above by the sphere x^2 + y^2 + z^2 = 2 and below by the paraboloid z = x^2 + y^2 . 4. Evaluate the integral Z Z R (12x^ 2 )(y^3) dA, where R is the triangle with vertices...
Calculate the double integral. R 9x sin(x + y) dA, R = (0, pi/6) x (0,pi/3)
Calculate the double integral. R 9x sin(x + y) dA, R = (0, pi/6) x (0,pi/3)
Use the given transformation to evaluate the double integral of (x-6y) dA, where R is the...
Use the given transformation to evaluate the double integral of (x-6y) dA, where R is the triangular region with vertices (0, 0), (5, 1), and (1, 5). x = 5u + v, y = u + 5v
Use the given transformation to evaluate the integral.    (12x + 12y) dA R , where...
Use the given transformation to evaluate the integral.    (12x + 12y) dA R , where R is the parallelogram with vertices (−2, 4), (2, −4), (5, −1), and (1, 7) ; x = 1 3 (u + v), y = 1 3 (v − 2u)
evaluate the double integral D (xsiny) dA D is bounded by y = 1, y=x, and...
evaluate the double integral D (xsiny) dA D is bounded by y = 1, y=x, and x=2
Using both type 1 and type 2 region evaluate double integral §§R (2x - 1)dA with...
Using both type 1 and type 2 region evaluate double integral §§R (2x - 1)dA with R enclosed by y + x - 1=0 , y - x = 1 and y = 2
57. a. Use polar coordinates to compute the (double integral (sub R)?? x dA, R x2...
57. a. Use polar coordinates to compute the (double integral (sub R)?? x dA, R x2 + y2) where R is the region in the first quadrant between the circles x2 + y2 = 1 and x2 + y2 = 2. b. Set up but do not evaluate a double integral for the mass of the lamina D={(x,y):1≤x≤3, 1≤y≤x3} with density function ρ(x, y) = 1 + x2 + y2. c. Compute??? the (triple integral of ez/ydV), where E= {(x,y,z):...
Calculate double integral D f(x, y) dA as an iterated integral, where f(x, y) = −4x...
Calculate double integral D f(x, y) dA as an iterated integral, where f(x, y) = −4x 2y 3 + 4y and D is the region bounded by y = −x − 3 and y = 3 − x 2 .
Use the given transformation to evaluate the integral. (x − 8y) dA, R where R is...
Use the given transformation to evaluate the integral. (x − 8y) dA, R where R is the triangular region with vertices (0, 0), (7, 1), and (1, 7). x = 7u + v, y = u + 7v