Question

6. Given the velocity and initial position of a body moving along a coordinate line at...

6. Given the velocity and initial position of a body moving along a coordinate line at time t, find the body's position at time t. v = -13t + 2, s(0) = 10

Homework Answers

Answer #1

Please thumbs up if it was helpful Will be glad to know:)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Given the following acceleration functions of an object moving along a line, find the position function...
Given the following acceleration functions of an object moving along a line, find the position function with the given initial velocity and position. a(t)=-32; v(0)=24, s(0)=0
The function s(t) describes the position of a particle moving along a coordinate line, where s...
The function s(t) describes the position of a particle moving along a coordinate line, where s is in feet and t is in seconds. s(t) = 3t2 - 6t +3 A) Find the anti-derivative of the velocity function and acceleration function in order to determine the position function. To find the constant after integration use the fact that s(0)=1. B) Find when the particle is speeding up and slowing down. C) Find the total distance from time 0 to time...
A particle is moving along a coordinate line with an acceleration of a(t) = 3t m/sec2....
A particle is moving along a coordinate line with an acceleration of a(t) = 3t m/sec2. If s(0) = 2 m and v(0) = 18 m/sec, find the position of the particle after 1 sec.
A particle is moving along a straight line and has acceleration given by a(t) = 20t^3+12t^2}....
A particle is moving along a straight line and has acceleration given by a(t) = 20t^3+12t^2}. Its initial velocity is v( 0 ) = 4 m / s and its initial displacement is s( 0 ) = 5 m. Find the position of the particle at t = 1 seconds.
A particle is moving along a straight line and has acceleration given by a(t) = 20t^3+12t^2}....
A particle is moving along a straight line and has acceleration given by a(t) = 20t^3+12t^2}. Its initial velocity is: v(0) = 4 m/ and its initial displacement is s(0) = 5 ms. Find the position of the particle at t = 1 seconds. 10  m 5  m 11  m 4  m 2m
A moving particle starts at an initial position r(0) = <1, 0, 0> with initial velocity...
A moving particle starts at an initial position r(0) = <1, 0, 0> with initial velocity v(0) = i - j + k. Its acceleration is a(t) = 4t i + 4t j + k. Find its velocity, v(t), and position, r(t), at time t.
The position function of an object moving along a straight line is given by s =...
The position function of an object moving along a straight line is given by s = f(t). The average velocity of the object over the time interval [a, b] is the average rate of change of f over [a, b]; its (instantaneous) velocity at t = a is the rate of change of f at a. A ball is thrown straight up with an initial velocity of 144 ft/sec, so that its height (in feet) after t sec is given...
10. You are planning to make an open rectangular box from a 16-in. – by -20...
10. You are planning to make an open rectangular box from a 16-in. – by -20 in. piece of cardboard by cutting congruent squares from the corners and folding up the sides. What square side length, x, gives the box of largest volume you can make this way. Draw a picture. SHOW WORK. X (2 decimal places): _______________________ 11. Given the velocity ds/dt and initial position of an object moving along a coordinate line at position at time t, find...
3. The velocity function of a particle is moving on a coordinate line is given by...
3. The velocity function of a particle is moving on a coordinate line is given by ?(?) = 6?^2 − 42? + 60 where ? is in meters per seconds and ? is in seconds. a) When is the particle at rest? b) When does the particle have positive velocity? c) When does the particle have negative acceleration? d) When is the particle speeding up? e) Sketch the position-time graph of the particle and the acceleration-time graph of the particle...
The velocity function (in meters per second) is given for a particle moving along a line....
The velocity function (in meters per second) is given for a particle moving along a line. v(t) = t2 − 2t − 8,    1 ≤ t ≤ 5 (a) Find the displacement. (m) (b) Find the distance traveled by the particle during the given time interval. (m)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT