Question

find number of units x, that produce the maximum profit P, if C(x)=50+68x and p=80-2x

find number of units x, that produce the maximum profit P, if C(x)=50+68x and p=80-2x

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find the maximum profit and the number of units that must be produced and sold in...
Find the maximum profit and the number of units that must be produced and sold in order to yield the maximum profit. Assume that revenue, R(x) and cost C(x) of producing units in dollars. R(x)=4x, , C(x) = 0.05x ^ 2 + 0.8x + 5 What is the production for the maximum profit? units What is the profit?
Find the maximum profit and the number of units that must be produced and sold in...
Find the maximum profit and the number of units that must be produced and sold in order to yield the maximum profit. Assume that​ revenue, R(x), and​ cost, C(x), of producing x units are in dollars. ​R(x)=40x−0.1x^2, ​C(x)=4x+10 In order to yield the maximum profit of ​$__ , __ units must be produced and sold. (Simplify your answers. Round to the nearest cent as​ needed.)
The monthly demand function for x units of a product sold by a monopoly is p...
The monthly demand function for x units of a product sold by a monopoly is p = 6,100 − 1/2x2  and its average cost is C = 3,030 + 2x dollars. Production is limited to 100 units. a) Find the profit function, P(x), in dollars. b) Find the number of units that maximizes profits. (Round your answer to the nearest whole number.) c) Find the maximum profit. (Round your answer to the nearest cent.)
Cost, revenue, and profit are in dollars and x is the number of units. Suppose that...
Cost, revenue, and profit are in dollars and x is the number of units. Suppose that the total revenue function for a product is R(x) = 55x and that the total cost function is C(x) = 2200 + 35x + 0.01x2. (a) Find the profit from the production and sale of 500 units. (b) Find the marginal profit function (c) Find MP at x = 500. Explain what it predicts. The total profit will ------ by approximately $------- on the...
1. Suppose the equation p(x,y)=-2x^2+80x-3y^2+90+100 models profit when x represents the number of handmade chairs and...
1. Suppose the equation p(x,y)=-2x^2+80x-3y^2+90+100 models profit when x represents the number of handmade chairs and y is the number of handmade rockers produced per week. (1) How many chairs and how many rockers will give the maximum profit when there is not constraint? (2) Due to an insufficient labor force they can only make a total of 20 chairs and rockers per week (x + y = 20). So how many chairs and how many rockers will give the...
assume that revenue, R(x), and cost, C(x), of producing x units are in dollars: R(x)=9x-2x^2 C(x)=x^3...
assume that revenue, R(x), and cost, C(x), of producing x units are in dollars: R(x)=9x-2x^2 C(x)=x^3 - 3x^2 +4x +1 how many units must be produced to maximize profit? what is the maximum profit as a dollar amount?
Cost, revenue, and profit are in dollars and x is the number of units. A firm...
Cost, revenue, and profit are in dollars and x is the number of units. A firm knows that its marginal cost for a product is MC = 3x + 30, that its marginal revenue is MR = 70 − 5x, and that the cost of production of 60 units is $7,380. (a) Find the optimal level of production. units (b) Find the profit function. P(x) = (c) Find the profit or loss at the optimal level. There is a of...
The weekly demand function for x units of a product sold by only one firm is...
The weekly demand function for x units of a product sold by only one firm is p = 400 − 1/2x dollars, and the average cost of production and sale is C = 100 + 2x dollars. (a) Find the quantity that will maximize profit. units (b) Find the selling price at this optimal quantity. $  per unit (c) What is the maximum profit? $ The weekly demand function for x units of a product sold by only one firm is...
Given P(x)= -0.02x3+600x-20000 on [50,150], find the maximum profit.
Given P(x)= -0.02x3+600x-20000 on [50,150], find the maximum profit.
a) Find the values of x and y in order to maximize the value of Q....
a) Find the values of x and y in order to maximize the value of Q. 2x+y=10 3x^2y=Q b) Find the number of units you will have to produce if you want to maximize profit if the cost and price equations are given below. Then find the maximum profit made. (6 points) C(x)= 4x+10 R(x)= 50x-0.5x^2 Units Produced: ____________________ Maximum Profit: ____________________ (Please show all work possible)