Question

The base of a solid is the region enclosed by y=sin(x), y=0, x=pi/4 and x=3pi/4. Every...

The base of a solid is the region enclosed by y=sin(x), y=0, x=pi/4 and x=3pi/4. Every cross section is a square taken perpendicular to the x-axis in this region. Find the volume of the solid.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The region bounded by y=x^3, y=x, x=0 is the base of a solid. a) If the...
The region bounded by y=x^3, y=x, x=0 is the base of a solid. a) If the cross sections are perpendicular to the x-axis are right isosceles triangles (congruent leg lies on the base), find the volume of the solid. b) If the cross sections are perpendicular to the y-axis are equilateral triangles, find the volume of the solid.
Consider the solid S described below. The base of S is the region enclosed by the...
Consider the solid S described below. The base of S is the region enclosed by the parabola y = 1 - 9x^2 and the x-axis. Cross-sections perpendicular to the x-axis are isosceles triangles with height equal to the base. Find the volume V of this solid.
A. (1 point) Find the volume of the solid obtained by rotating the region enclosed by...
A. (1 point) Find the volume of the solid obtained by rotating the region enclosed by ?= ?^(4?)+5, ?= 0, ?= 0, ?= 0.8 about the x-axis using the method of disks or washers. Volume = ___ ? ∫ B. (1 point) Find the volume of the solid obtained by rotating the region enclosed by ?= 1/(?^4) , ?= 0, ?= 1, and ?= 6, about the line ?= −5 using the method of disks or washers. Volume = ___?...
3) The base of a solid is the first quadrant region between the curve y =...
3) The base of a solid is the first quadrant region between the curve y = 2 ⋅ sin ⁡ xand the x-axis on the interval [ 0 , π ]. Cross sections perpendicular to the x-axis are semi circles with diameters in the x-y plane. Sketch the solid. Find the volume of the solid.
Sketch the region enclosed by the equations y = tan x, y 0, x= pi/4 ....
Sketch the region enclosed by the equations y = tan x, y 0, x= pi/4 . Include a typical approximating rectangle. You may use Maple or other technology for this. a. Find/set-up an integral that could be used to find the area of the region in. Do not evaluate.   b. Set up an integral that could be used to find the volume of the solid obtained by rotating the region in #1 around the line x =pi/ 2 . Do...
Find the volume of the solid formed by rotating the region enclosed by x=0,x=1,y=0,y=4+x^6 about the...
Find the volume of the solid formed by rotating the region enclosed by x=0,x=1,y=0,y=4+x^6 about the y-axis. Volume =
Find the volume of the of the solid described as follows: The base of the solid...
Find the volume of the of the solid described as follows: The base of the solid is the region enclosed by the line y=4-x, the line y=x, and the y-axis. The cross sections of the region that are perpendicular to the x-axis are isosceles triangles whose height is equal to half their base. What is the volume of this solid (rounded to two decimal places)? Please show work. Thanks much!
The base o a solid is the region in the xy plane bounded by y =...
The base o a solid is the region in the xy plane bounded by y = 4x, y = 2x+8 and x = 0. Find the the volume of the solid if the cross sections that are perpendicular to the x-axis are: (a) Squares; (b) semicircles.
The base of a solid is the region bounded by y = 9 and y =...
The base of a solid is the region bounded by y = 9 and y = x 2 . The cross-sections of the solid perpendicular to the x axis are rectangles of height 10. The volume of the solid is
Find the volume of the solid formed by rotating the region enclosed by y=e3x+3, y=0, x=0,...
Find the volume of the solid formed by rotating the region enclosed by y=e3x+3, y=0, x=0, x=0.9 about the y-axis.