part 1)
Find the partial derivatives of the function
f(x,y)=xsin(7x^6y):
fx(x,y)=
fy(x,y)=
part 2)
Find the...
part 1)
Find the partial derivatives of the function
f(x,y)=xsin(7x^6y):
fx(x,y)=
fy(x,y)=
part 2)
Find the partial derivatives of the function
f(x,y)=x^6y^6/x^2+y^2
fx(x,y)=
fy(x,y)=
part 3)
Find all first- and second-order partial derivatives of the
function f(x,y)=2x^2y^2−2x^2+5y
fx(x,y)=
fy(x,y)=
fxx(x,y)=
fxy(x,y)=
fyy(x,y)=
part 4)
Find all first- and second-order partial derivatives of the
function f(x,y)=9ye^(3x)
fx(x,y)=
fy(x,y)=
fxx(x,y)=
fxy(x,y)=
fyy(x,y)=
part 5)
For the function given below, find the numbers (x,y) such that
fx(x,y)=0 and fy(x,y)=0
f(x,y)=6x^2+23y^2+23xy+4x−2
Answer: x= and...
9. (3 pts) Find the partial derivatives, as listed, of the
function g(x,y) given below.
gx(x,y)...
9. (3 pts) Find the partial derivatives, as listed, of the
function g(x,y) given below.
gx(x,y) =
gxx(x,y) =
gxy(x,y) =
g(x, y) = 2x3y4 + 5x + ey gy(x,y) =
gyy(x,y) =
gyx(x,y) =