Question

1) Consider the curve y = e^cos(x) . (a) Find y' (b) Use your answer to...

1) Consider the curve y = e^cos(x) .

(a) Find y'

(b) Use your answer to part (a) to find the equation of the tangent line to y = e^cos(x) at x = π/2.

2)

3)Consider the curve y = x + 1/x − 1 .

(a) Find y' .

(b) Use your answer to part (a) to find the points on the curve y = x + 1/x − 1 where the tangent line is parallel to the line y = − 1/2 x + 5

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1)Consider the curve y = x + 1/x − 1 . (a) Find y' . (b)...
1)Consider the curve y = x + 1/x − 1 . (a) Find y' . (b) Use your answer to part (a) to find the points on the curve y = x + 1/x − 1 where the tangent line is parallel to the line y = − 1/2 x + 5 2) (a) Consider lim h→0 tan^2 (π/3 + h) − 3/h This limit represents the derivative, f'(a), of some function f at some number a. State such an...
7. For the parametric curve x(t) = 2 − 5 cos(t), y(t) = 1 + 3...
7. For the parametric curve x(t) = 2 − 5 cos(t), y(t) = 1 + 3 sin(t), t ∈ [0, 2π) Part a: (2 points) Give an equation relating x and y that represents the curve. Part b: (4 points) Find the slope of the tangent line to the curve when t = π 6 . Part c: (4 points) State the points (x, y) where the tangent line is horizontal
4) Consider the polar curve r=e2theta a) Find the parametric equations x = f(θ), y =...
4) Consider the polar curve r=e2theta a) Find the parametric equations x = f(θ), y = g(θ) for this curve. b) Find the slope of the line tangent to this curve when θ=π. 6) a)Suppose r(t) = < cos(3t), sin(3t),4t >. Find the equation of the tangent line to r(t) at the point (-1, 0, 4pi). b) Find a vector orthogonal to the plane through the points P (1, 1, 1), Q(2, 0, 3), and R(1, 1, 2) and the...
Find an equation of the tangent line to the curve at the given point. 1.) y=...
Find an equation of the tangent line to the curve at the given point. 1.) y= sqrt(5x+ 9), at x= 10. 2.) y= cos(x) + cos^3(x), at x=π/6.
For the parametric curve x(t) = 2−5cos(t), y(t) = 1 + 3sin(t), t ∈ [0,2π) Part...
For the parametric curve x(t) = 2−5cos(t), y(t) = 1 + 3sin(t), t ∈ [0,2π) Part a: Give an equation relating x and y that represents the curve. Part b: Find the slope of the tangent line to the curve when t = π/6 . Part c: State the points (x,y) where the tangent line is horizontal.
Consider the equation: x^ 4 + 3xy^3 − y ^4 = 9x^2 y a) find the...
Consider the equation: x^ 4 + 3xy^3 − y ^4 = 9x^2 y a) find the points on the curve where x = 3 b) for each of the points found in pt. a find the slope of tangent line at that point c) for each of the points found in pt. a , write an equation for the tangent line to the curve at that point.
1. Graph the curve given in parametric form by x = e t sin(t) and y...
1. Graph the curve given in parametric form by x = e t sin(t) and y = e t cos(t) on the interval 0 ≤ t ≤ π2. 2. Find the length of the curve in the previous problem. 3. In the polar curve defined by r = 1 − sin(θ) find the points where the tangent line is vertical.
a) Find the equation of the tangent line to the curve x= 2sin2t, y= 3sint at...
a) Find the equation of the tangent line to the curve x= 2sin2t, y= 3sint at the point where the same. b) Find the points on the curve x= t^2-t+2, y=t^3-3t where the tangent is horizontal.
(a) Find the unit vectors that are parallel to the tangent line to the curve y...
(a) Find the unit vectors that are parallel to the tangent line to the curve y = 2 sin x at the point (π/6, 1). (Enter your answer as a comma-separated list of vectors.) (b) Find the unit vectors that are perpendicular to the tangent line.
Find an equation for the line tangent to the following curve at the point (4,1). 1−y=sin(x+y^(2)−5)...
Find an equation for the line tangent to the following curve at the point (4,1). 1−y=sin(x+y^(2)−5) Use symbolic notation and fractions where needed. Express the equation of the tangent line in terms of y and x. equation:
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT